Dipartimento di Fisica "E.R. Caianiello", and INFN, Gruppo Collegato di Salerno, and CNISM, Unità di Salerno, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Phys Rev E. 2017 Jun;95(6-1):062136. doi: 10.1103/PhysRevE.95.062136. Epub 2017 Jun 29.
We study numerically a two-dimensional random-bond Ising model where frustration can be tuned by varying the fraction a of antiferromagnetic coupling constants. At low temperatures the model exhibits a phase with ferromagnetic order for sufficiently small values of a, a<a_{f}. In an intermediate range, a_{f}<a<a_{a}, the system is paramagnetic, with spin-glass order expected right at zero temperature. For even larger values, a>a_{a}, an antiferromagnetic phase exists. After a deep quench from high temperatures, slow evolution is observed for any value of a. We show that different amounts of frustration, tuned by a, affect the dynamical properties in a highly nontrivial way. In particular, the kinetics is logarithmically slow in phases with ferromagnetic or antiferromagnetic order, whereas evolution is faster, i.e., algebraic, when spin-glass order is prevailing. An interpretation is given in terms of the different nature of phase space.
我们通过数值研究了二维随机键伊辛模型,通过改变反铁磁耦合常数的分数 a 可以调整模型中的受挫情况。在低温下,当 a 值足够小时,即 a<a_{f},模型表现出铁磁有序相。在中间范围内,a_{f}<a<a_{a},系统处于顺磁相,预计在零温度下存在自旋玻璃有序。对于更大的值,a>a_{a},存在反铁磁相。在高温下深度淬火后,对于任何 a 值,都观察到缓慢的演化。我们表明,通过 a 调整的不同程度的受挫情况以一种非常复杂的方式影响动力学特性。特别是,在具有铁磁或反铁磁序的相中,动力学是对数缓慢的,而当自旋玻璃序占主导时,演化更快,即代数。通过不同的相空间性质给出了解释。