Department of Physics and National Institute of Science and Technology of Complex Systems, Universidade Federal do Rio Grande do Norte, 59078-970 Natal-RN, Brazil.
Phys Rev E. 2017 Jun;95(6-1):062138. doi: 10.1103/PhysRevE.95.062138. Epub 2017 Jun 30.
An important problem in statistical physics concerns the fascinating connections between partition functions of lattice models studied in equilibrium statistical mechanics on the one hand and graph theoretical enumeration problems on the other hand. We investigate the nature of the relationship between the number of spanning trees and the partition function of the Ising model on the square lattice. The spanning tree generating function T(z) gives the spanning tree constant when evaluated at z=1, while giving the lattice green function when differentiated. It is known that for the infinite square lattice the partition function Z(K) of the Ising model evaluated at the critical temperature K=K_{c} is related to T(1). Here we show that this idea in fact generalizes to all real temperatures. We prove that [Z(K)sech2K]^{2}=kexp[T(k)] , where k=2tanh(2K)sech(2K). The identical Mahler measure connects the two seemingly disparate quantities T(z) and Z(K). In turn, the Mahler measure is determined by the random walk structure function. Finally, we show that the the above correspondence does not generalize in a straightforward manner to nonplanar lattices.
统计物理学中的一个重要问题涉及到平衡统计力学中晶格模型的配分函数与图论计数问题之间迷人的联系。我们研究了在正方形晶格上伊辛模型的生成树数量与配分函数之间关系的本质。当在 z=1 处评估时,生成树生成函数 T(z)给出生成树常数,而在微分时给出晶格格林函数。已知对于无限正方形晶格,在临界温度 K=K_{c} 处评估的伊辛模型的配分函数 Z(K)与 T(1)有关。在这里,我们证明这个想法实际上可以推广到所有实温度。我们证明了 [Z(K)sech2K]^{2}=kexp[T(k)],其中 k=2tanh(2K)sech(2K)。相同的 Mahler 测度将两个看似不同的量 T(z)和 Z(K)联系起来。反过来,Mahler 测度由随机游走结构函数决定。最后,我们表明,上述对应关系不能直接推广到非平面晶格。