Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA.
Phys Rev E. 2017 Jun;95(6-1):062224. doi: 10.1103/PhysRevE.95.062224. Epub 2017 Jun 29.
Semiclassical sum rules, such as the Gutzwiller trace formula, depend on the properties of periodic, closed, or homoclinic (heteroclinic) orbits. The interferences embedded in such orbit sums are governed by classical action functions and Maslov indices. For chaotic systems, the relative actions of such orbits can be expressed in terms of phase-space areas bounded by segments of stable and unstable manifolds and Moser invariant curves. This also generates direct relations between periodic orbits and homoclinic (heteroclinic) orbit actions. Simpler, explicit approximate expressions following from the exact relations are given with error estimates. They arise from asymptotic scaling of certain bounded phase-space areas. The actions of infinite subsets of periodic orbits are determined by their periods and the locations of the limiting homoclinic points on which they accumulate.
半经典求和规则,如古茨维勒迹公式,取决于周期、闭合或同宿(异宿)轨道的性质。这些轨道和中的干涉由经典作用函数和马苏洛夫指数控制。对于混沌系统,这种轨道的相对作用可以用由稳定和不稳定流形的片段以及莫泽不变曲线所包围的相空间区域来表示。这也在周期轨道和同宿(异宿)轨道作用之间产生了直接关系。本文给出了具有误差估计的精确关系的更简单的显式近似表达式。它们来源于某些有界相空间区域的渐近标度。无限多个周期轨道的作用由它们的周期和它们积累的极限同宿点的位置决定。