Suppr超能文献

体外宿主-病原体和媒介-病原体相互作用过程中普氏立克次体编码和非编码转录本的转录谱分析。

Transcriptional profiling of Rickettsia prowazekii coding and non-coding transcripts during in vitro host-pathogen and vector-pathogen interactions.

机构信息

Department of Pathology, University of Texas Medical Branch, 301 University Boulevard Galveston, TX 77555, USA.

Department of Pharmacology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.

出版信息

Ticks Tick Borne Dis. 2017 Oct;8(6):827-836. doi: 10.1016/j.ttbdis.2017.06.008. Epub 2017 Jun 29.

Abstract

Natural pathogen transmission of Rickettsia prowazekii, the etiologic agent of epidemic typhus, to humans is associated with arthropods, including human body lice, ticks, and ectoparasites of eastern flying squirrel. Recently, we have documented the presence of small RNAs in Rickettsia species and expression of R. prowazekii sRNAs during infection of cultured human microvascular endothelial cells (HMECs), which represent the primary target cells during human infections. Bacterial noncoding transcripts are now well established as critical post-transcriptional regulators of virulence and adaptation mechanisms in varying host environments. Despite their importance, little is known about the expression profile and regulatory activities of R. prowazekii sRNAs (Rp_sRs) in different host cells encountered as part of the natural life-cycle. To investigate the sRNA expression profile of R. prowazekii during infection of arthropod host cells, we employed an approach combining in vitro infection, bioinformatics, RNA sequencing, and PCR-based quantitation. Global analysis of R. prowazekii transcriptome by strand-specific RNA sequencing enabled us to identify 67 cis-acting (antisense) and 26 trans-acting (intergenic) Rp_sRs expressed during the infection of Amblyomma americanum (AAE2) cells. Comparative evaluation of expression during R. prowazekii infection of HMECs and AAE2 cells by quantitative RT-PCR demonstrated significantly higher expression of four selected Rp_sRs in tick AAE2 cells. Examination of the coding transcriptome revealed differential up-regulation of >150 rickettsial genes in either HMECs or AAE2 cells and yielded evidence for host cell-dependent utilization of alternative transcription start sites by 18 rickettsial genes. Our results thus suggest noticeable differences in the expression of both Rp_sRs as well as the coding transcriptome and the exploitation of multiple transcription initiation sites for select genes during the infection of human endothelium and tick vector cells as the host and yield new insights into rickettsial virulence and transmission mechanisms.

摘要

天然病原体普氏立克次体(导致流行性斑疹伤寒的病原体)向人类的传播与节肢动物有关,包括人体虱、蜱和东部飞松鼠的外寄生虫。最近,我们已经在立克次体物种中发现了小 RNA 的存在,并在培养的人微血管内皮细胞(HMEC)感染过程中观察到了普氏立克次体 sRNA 的表达,这些细胞是人类感染过程中的主要靶细胞。细菌非编码转录物现在被认为是在不同宿主环境中影响毒力和适应机制的关键转录后调控因子。尽管它们很重要,但对于在自然生命周期中遇到的不同宿主细胞中普氏立克次体 sRNA(Rp_sRs)的表达谱和调控活性知之甚少。为了研究普氏立克次体在节肢动物宿主细胞感染过程中的 sRNA 表达谱,我们采用了一种结合体外感染、生物信息学、RNA 测序和基于 PCR 的定量方法。通过链特异性 RNA 测序对普氏立克次体转录组进行全面分析,使我们能够鉴定出在美洲钝缘蜱(AAE2)细胞感染过程中表达的 67 个顺式作用(反义)和 26 个反式作用(基因间)Rp_sRs。通过定量 RT-PCR 对普氏立克次体感染 HMEC 和 AAE2 细胞过程中的表达进行比较评估,表明在蜱 AAE2 细胞中,四个选定的 Rp_sRs 的表达显著更高。对编码转录组的检查显示,在 HMEC 或 AAE2 细胞中,超过 150 个立克次体基因的表达上调,并且有证据表明 18 个立克次体基因在宿主细胞依赖性地利用了替代转录起始位点。因此,我们的研究结果表明,在感染人类内皮细胞和蜱载体细胞时,Rp_sRs 以及编码转录组的表达存在明显差异,并对选择基因的多个转录起始位点的利用产生了新的认识,这对立克次体的毒力和传播机制提供了新的见解。

相似文献

2
Bacterial small RNAs in the Genus Rickettsia.
BMC Genomics. 2015 Dec 18;16:1075. doi: 10.1186/s12864-015-2293-7.
4
Small Regulatory RNAs of Rickettsia conorii.
Sci Rep. 2016 Nov 11;6:36728. doi: 10.1038/srep36728.
5
Identification and Characterization of Novel Small RNAs in Rickettsia prowazekii.
Front Microbiol. 2016 Jun 8;7:859. doi: 10.3389/fmicb.2016.00859. eCollection 2016.
6
Temperature-dependent sRNA transcriptome of the Lyme disease spirochete.
BMC Genomics. 2017 Jan 5;18(1):28. doi: 10.1186/s12864-016-3398-3.
7
DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii.
Appl Environ Microbiol. 2008 Dec;74(24):7809-12. doi: 10.1128/AEM.00896-08. Epub 2008 Oct 24.
8
Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.
PLoS One. 2011 Jan 26;6(1):e16537. doi: 10.1371/journal.pone.0016537.

引用本文的文献

1
Pathogenic spp. as emerging models for bacterial biology.
J Bacteriol. 2024 Feb 22;206(2):e0040423. doi: 10.1128/jb.00404-23. Epub 2024 Feb 5.
2
Innate immunity in rickettsial infections.
Front Cell Infect Microbiol. 2023 May 9;13:1187267. doi: 10.3389/fcimb.2023.1187267. eCollection 2023.
4
Aglow: A Fluorescence Assay and Machine Learning Model to Identify Inhibitors of Intracellular Infection.
ACS Infect Dis. 2022 Jul 8;8(7):1280-1290. doi: 10.1021/acsinfecdis.2c00014. Epub 2022 Jun 24.
5
Genomic evolution and adaptation of arthropod-associated Rickettsia.
Sci Rep. 2022 Mar 9;12(1):3807. doi: 10.1038/s41598-022-07725-z.
6
How relevant are in vitro culture models for study of tick-pathogen interactions?
Pathog Glob Health. 2021 Oct-Dec;115(7-8):437-455. doi: 10.1080/20477724.2021.1944539. Epub 2021 Jun 30.
7
GroEL is an immunodominant surface-exposed antigen of Rickettsia typhi.
PLoS One. 2021 Jun 10;16(6):e0253084. doi: 10.1371/journal.pone.0253084. eCollection 2021.
9
Recent research milestones in the pathogenesis of human rickettsioses and opportunities ahead.
Future Microbiol. 2020 Jun;15(9):753-765. doi: 10.2217/fmb-2019-0266. Epub 2020 Jul 21.

本文引用的文献

1
Small Regulatory RNAs of Rickettsia conorii.
Sci Rep. 2016 Nov 11;6:36728. doi: 10.1038/srep36728.
2
Identification and Characterization of Novel Small RNAs in Rickettsia prowazekii.
Front Microbiol. 2016 Jun 8;7:859. doi: 10.3389/fmicb.2016.00859. eCollection 2016.
3
The Rickettsia type IV secretion system: unrealized complexity mired by gene family expansion.
Pathog Dis. 2016 Aug;74(6). doi: 10.1093/femspd/ftw058. Epub 2016 Jun 14.
4
Bacterial small RNAs in the Genus Rickettsia.
BMC Genomics. 2015 Dec 18;16:1075. doi: 10.1186/s12864-015-2293-7.
5
sRNA-Mediated Regulation of P-Fimbriae Phase Variation in Uropathogenic Escherichia coli.
PLoS Pathog. 2015 Aug 20;11(8):e1005109. doi: 10.1371/journal.ppat.1005109. eCollection 2015 Aug.
7
Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis.
PLoS One. 2015 Mar 4;10(3):e0118595. doi: 10.1371/journal.pone.0118595. eCollection 2015.
8
Where to begin? Mapping transcription start sites genome-wide in Escherichia coli.
J Bacteriol. 2015 Jan 1;197(1):4-6. doi: 10.1128/JB.02410-14. Epub 2014 Oct 20.
9
Secretome of obligate intracellular Rickettsia.
FEMS Microbiol Rev. 2015 Jan;39(1):47-80. doi: 10.1111/1574-6976.12084. Epub 2014 Dec 4.
10
Differential RNA-seq: the approach behind and the biological insight gained.
Curr Opin Microbiol. 2014 Jun;19:97-105. doi: 10.1016/j.mib.2014.06.010. Epub 2014 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验