Suppr超能文献

如何设计高效的整群随机试验。

How to design efficient cluster randomised trials.

作者信息

Hemming K, Eldridge S, Forbes G, Weijer C, Taljaard M

机构信息

Institute of Applied Health Research, University of Birmingham, Birmingham B15 2TT, UK

Pragmatic Clinical Trials Unit, Centre for Primary Care and Public Health, Queen Marys University, London, UK.

出版信息

BMJ. 2017 Jul 14;358:j3064. doi: 10.1136/bmj.j3064.

Abstract

Cluster randomised trials have diminishing returns in power and precision as cluster size increases. Making the cluster a lot larger while keeping the number of clusters fixed might yield only a very small increase in power and precision, owing to the intracluster correlation. Identifying the point at which observations start making a negligible contribution to the power or precision of the study—which we call the point of diminishing returns—is important for designing efficient trials. Current methods for identifying this point are potentially useful as rules of thumb but don’t generally work well. We introduce several practical aids to help researchers design cluster randomised trials in which all observations make a material contribution to the study. Power curves enable identification of the point at which observations begin to make a negligible contribution to a study for a given target difference. Under this paradigm, the number needed per arm under individual randomisation gives an upper bound on the cluster size, which should not be exceeded. Corresponding precision curves can be useful for accommodating flexibility in the choice of target difference and show the point at which confidence intervals around the estimated effect size no longer decrease. To design efficient trials, the number of clusters and cluster size should be determined concurrently, not independently. Funders and researchers should be aware of diminishing returns in cluster trials. Researchers should routinely plot power or precision curves when performing sample size calculations so that the implications of cluster sizes can be transparent. Even when data appear to be “free,” in the sense that few resources are needed to obtain the data, excessive cluster sizes can have important ramifications

摘要

随着聚类大小的增加,整群随机试验在效能和精度方面的回报逐渐减少。在保持聚类数量不变的情况下将聚类规模大幅增大,由于聚类内相关性,可能只会使效能和精度有非常小的提升。确定观察值开始对研究的效能或精度贡献可忽略不计的点(我们称之为收益递减点)对于设计高效试验很重要。当前用于确定这一点的方法作为经验法则可能有用,但通常效果不佳。我们引入了几种实用工具,以帮助研究人员设计整群随机试验,使所有观察值都能对研究做出实质性贡献。效能曲线能够确定对于给定目标差异,观察值开始对研究贡献可忽略不计的点。在这种范式下,个体随机化时每组所需的数量给出了聚类规模的上限,不应超过该上限。相应的精度曲线对于在目标差异选择上提供灵活性很有用,并显示估计效应大小周围的置信区间不再缩小的点。为了设计高效试验,聚类数量和聚类大小应同时确定,而不是独立确定。资助者和研究人员应意识到整群试验中的收益递减。研究人员在进行样本量计算时应常规绘制效能或精度曲线,以便聚类大小的影响能够清晰明了。即使数据在获取所需资源很少的意义上看似“免费”,过大的聚类规模也可能产生重要影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11a7/5508848/27c67835913d/hemk038129.f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验