Suppr超能文献

基于人群的研究中的环境暴露评估的机遇与挑战。

Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies.

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts.

Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California.

出版信息

Cancer Epidemiol Biomarkers Prev. 2017 Sep;26(9):1370-1380. doi: 10.1158/1055-9965.EPI-17-0459. Epub 2017 Jul 14.

Abstract

A growing number and increasing diversity of factors are available for epidemiological studies. These measures provide new avenues for discovery and prevention, yet they also raise many challenges for adoption in epidemiological investigations. Here, we evaluate 1) designs to investigate diseases that consider heterogeneous and multidimensional indicators of exposure and behavior, 2) the implementation of numerous methods to capture indicators of exposure, and 3) the analytical methods required for discovery and validation. We find that case-control studies have provided insights into genetic susceptibility but are insufficient for characterizing complex effects of environmental factors on disease development. Prospective and two-phase designs are required but must balance extended data collection with follow-up of study participants. We discuss innovations in assessments including the microbiome; mass spectrometry and metabolomics; behavioral assessment; dietary, physical activity, and occupational exposure assessment; air pollution monitoring; and global positioning and individual sensors. We claim the the availability of extensive correlated data raises new challenges in disentangling specific exposures that influence cancer risk from among extensive and often correlated exposures. In conclusion, new high-dimensional exposure assessments offer many new opportunities for environmental assessment in cancer development. .

摘要

越来越多的因素可用于流行病学研究,其种类也日益多样化。这些方法为发现和预防提供了新途径,但在流行病学研究中采用这些方法也带来了许多挑战。在这里,我们评估了 1)用于研究疾病的设计,这些设计考虑了暴露和行为的异质和多维指标,2)用于捕捉暴露指标的众多方法的实施情况,以及 3)用于发现和验证的分析方法。我们发现病例对照研究为遗传易感性提供了一些见解,但不足以描述环境因素对疾病发展的复杂影响。需要采用前瞻性和两阶段设计,但必须平衡延长的数据收集与研究参与者的随访。我们讨论了评估方法的创新,包括微生物组;质谱和代谢组学;行为评估;饮食、体力活动和职业暴露评估;空气污染监测;以及全球定位和个人传感器。我们声称,广泛相关数据的可用性提出了新的挑战,即需要从广泛且通常相关的暴露中分离出影响癌症风险的特定暴露。总之,新的高维暴露评估为癌症发展中的环境评估提供了许多新机会。

相似文献

1
Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies.
Cancer Epidemiol Biomarkers Prev. 2017 Sep;26(9):1370-1380. doi: 10.1158/1055-9965.EPI-17-0459. Epub 2017 Jul 14.
2
MicroRNAs as biomarkers of harmful environmental and occupational exposures: a systematic review.
Biomarkers. 2019 Nov;24(7):623-630. doi: 10.1080/1354750X.2019.1652348. Epub 2019 Aug 19.
7
Environmental and individual exposure and the risk of congenital anomalies: a review of recent epidemiological evidence.
Epidemiol Prev. 2018 May-Aug;42(3-4 Suppl 1):1-34. doi: 10.19191/EP18.3-4.S1.P001.057.
9
Deployment-Associated Exposure Surveillance With High-Resolution Metabolomics.
J Occup Environ Med. 2016 Aug;58(8 Suppl 1):S12-21. doi: 10.1097/JOM.0000000000000768.
10
Assessment of a pesticide exposure intensity algorithm in the agricultural health study.
J Expo Sci Environ Epidemiol. 2010 Sep;20(6):559-69. doi: 10.1038/jes.2009.54. Epub 2009 Nov 4.

引用本文的文献

1
The architecture of exposome-phenome associations.
medRxiv. 2025 Jun 6:2025.06.05.25329055. doi: 10.1101/2025.06.05.25329055.
4
Advancing environmental epidemiologic methods to confront the cancer burden.
Am J Epidemiol. 2025 Jan 8;194(1):195-207. doi: 10.1093/aje/kwae175.
5
Integrating the Physical Environment Within a Population Neuroscience Perspective.
Curr Top Behav Neurosci. 2024;68:223-238. doi: 10.1007/7854_2024_477.
6
Decoding the exposome: data science methodologies and implications in exposome-wide association studies (ExWASs).
Exposome. 2024 Jan 17;4(1):osae001. doi: 10.1093/exposome/osae001. eCollection 2024.
9
A Clinician's Guide to Occupational Exposures in the Military.
Curr Allergy Asthma Rep. 2022 Dec;22(12):259-264. doi: 10.1007/s11882-022-01051-0. Epub 2022 Nov 12.

本文引用的文献

1
Estimating the Causal Effect of Treatment in Observational Studies with Survival Time Endpoints and Unmeasured Confounding.
J R Stat Soc Ser C Appl Stat. 2017 Jan;66(1):159-185. doi: 10.1111/rssc.12158. Epub 2016 Jun 27.
2
Update on the State of the Science for Analytical Methods for Gene-Environment Interactions.
Am J Epidemiol. 2017 Oct 1;186(7):762-770. doi: 10.1093/aje/kwx228.
3
Incorporation of Biological Knowledge Into the Study of Gene-Environment Interactions.
Am J Epidemiol. 2017 Oct 1;186(7):771-777. doi: 10.1093/aje/kwx229.
4
Assessing the Exposome with External Measures: Commentary on the State of the Science and Research Recommendations.
Annu Rev Public Health. 2017 Mar 20;38:215-239. doi: 10.1146/annurev-publhealth-082516-012802.
5
Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with Phenotypes in the Exposome Era.
Curr Epidemiol Rep. 2017;4(1):22-30. doi: 10.1007/s40471-017-0100-5. Epub 2017 Jan 18.
6
Informatics and Data Analytics to Support Exposome-Based Discovery for Public Health.
Annu Rev Public Health. 2017 Mar 20;38:279-294. doi: 10.1146/annurev-publhealth-082516-012737. Epub 2016 Dec 23.
7
Biomonitoring in the Era of the Exposome.
Environ Health Perspect. 2017 Apr;125(4):502-510. doi: 10.1289/EHP474. Epub 2016 Jul 6.
8
The Importance of the Biological Impact of Exposure to the Concept of the Exposome.
Environ Health Perspect. 2016 Oct;124(10):1504-1510. doi: 10.1289/EHP140. Epub 2016 Jun 3.
10
Microbial Ecology of the Human Skin.
Microb Ecol. 2018 Jul;76(1):113-120. doi: 10.1007/s00248-016-0789-6. Epub 2016 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验