Suppr超能文献

机器学习作为早期检测的工具:聚焦社会经济各阶层的晚期结直肠癌

Machine Learning as a Tool for Early Detection: A Focus on Late-Stage Colorectal Cancer across Socioeconomic Spectrums.

作者信息

Galadima Hadiza, Anson-Dwamena Rexford, Johnson Ashley, Bello Ghalib, Adunlin Georges, Blando James

机构信息

School of Community and Environmental Health, Old Dominion University, Norfolk, VA 23529, USA.

Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Cancers (Basel). 2024 Jan 26;16(3):540. doi: 10.3390/cancers16030540.

Abstract

PURPOSE

To assess the efficacy of various machine learning (ML) algorithms in predicting late-stage colorectal cancer (CRC) diagnoses against the backdrop of socio-economic and regional healthcare disparities.

METHODS

An innovative theoretical framework was developed to integrate individual- and census tract-level social determinants of health (SDOH) with sociodemographic factors. A comparative analysis of the ML models was conducted using key performance metrics such as AUC-ROC to evaluate their predictive accuracy. Spatio-temporal analysis was used to identify disparities in late-stage CRC diagnosis probabilities.

RESULTS

Gradient boosting emerged as the superior model, with the top predictors for late-stage CRC diagnosis being anatomic site, year of diagnosis, age, proximity to superfund sites, and primary payer. Spatio-temporal clusters highlighted geographic areas with a statistically significant high probability of late-stage diagnoses, emphasizing the need for targeted healthcare interventions.

CONCLUSIONS

This research underlines the potential of ML in enhancing the prognostic predictions in oncology, particularly in CRC. The gradient boosting model, with its robust performance, holds promise for deployment in healthcare systems to aid early detection and formulate localized cancer prevention strategies. The study's methodology demonstrates a significant step toward utilizing AI in public health to mitigate disparities and improve cancer care outcomes.

摘要

目的

在社会经济和地区医疗保健差异的背景下,评估各种机器学习(ML)算法预测晚期结直肠癌(CRC)诊断的疗效。

方法

开发了一个创新的理论框架,将个体和普查区层面的健康社会决定因素(SDOH)与社会人口因素相结合。使用AUC-ROC等关键性能指标对ML模型进行比较分析,以评估其预测准确性。采用时空分析来确定晚期CRC诊断概率的差异。

结果

梯度提升成为 superior 模型,晚期CRC诊断的首要预测因素是解剖部位、诊断年份、年龄、与超级基金场地的距离以及主要支付方。时空聚类突出了晚期诊断概率具有统计学显著高可能性的地理区域,强调了有针对性的医疗干预的必要性。

结论

本研究强调了ML在增强肿瘤学预后预测方面的潜力,特别是在CRC中。梯度提升模型凭借其强大的性能,有望在医疗系统中部署,以帮助早期检测并制定局部癌症预防策略。该研究的方法展示了在公共卫生中利用人工智能以减轻差异并改善癌症护理结果的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c5a/10854986/c7b5ef28dd53/cancers-16-00540-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验