Suppr超能文献

钠梯度依赖性L-谷氨酸转运定位于肝细胞膜的胆小管结构域。大鼠肝窦状隙和胆小管膜囊泡的研究。

Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles.

作者信息

Ballatori N, Moseley R H, Boyer J L

出版信息

J Biol Chem. 1986 May 15;261(14):6216-21.

PMID:2871024
Abstract

The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.

摘要

在纯化的大鼠肝细胞膜微囊(小管膜微囊,即cLPM)和基底外侧膜微囊(即血窦侧和外侧膜微囊,blLPM)中测定了L-谷氨酸转运的驱动力。cLPM微囊中L-谷氨酸摄取的初始速率受Na⁺梯度(细胞外Na⁺浓度高于细胞内Na⁺浓度)刺激,但不受K⁺梯度刺激。L-谷氨酸摄取的刺激对Na⁺具有特异性,对温度敏感,且与非特异性结合无关。Na⁺依赖性L-谷氨酸摄取到cLPM微囊中表现出饱和动力学,在细胞外钠浓度为100 mM时,表观Km为24 μM,Vmax为21 pmol/mg·min。特定的阴离子氨基酸抑制L-[³H]谷氨酸摄取并加速L-[³H]谷氨酸的交换扩散。外向的K⁺梯度(细胞内K⁺浓度高于细胞外K⁺浓度)进一步增加了cLPM微囊中Na⁺梯度(细胞外Na⁺浓度高于细胞内Na⁺浓度)依赖性的L-谷氨酸摄取,导致L-谷氨酸在平衡值之上短暂积累(超射)。K⁺效应绝对依赖于Na⁺。相比之下,在blLPM中,L-谷氨酸摄取的初始速率仅受到Na⁺梯度的最小刺激,这种效应可能是由于blLPM微囊被cLPM微囊污染所致。这些结果表明,肝脏中Na⁺梯度依赖性L-谷氨酸转运发生在质膜的小管区域,而L-谷氨酸跨血窦膜的转运主要是被动扩散的结果。这些发现解释了各种体外肝脏制剂转运谷氨酸能力之间明显的差异,并表明小管谷氨酸转运系统可能用于从胆汁中重吸收这种氨基酸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验