Meier P J, Knickelbein R, Moseley R H, Dobbins J W, Boyer J L
J Clin Invest. 1985 Apr;75(4):1256-63. doi: 10.1172/JCI111824.
To determine whether anion exchangers might play a role in hepatic bile formation, we looked for the presence of Cl-:OH- and Cl-:HCO3- exchange in highly purified canalicular (c) and basolateral (bl) rat liver plasma membrane (LPM) vesicles. In cLPM vesicles, a pH gradient (7.7 in/6.0 out) stimulated 36Cl- uptake twofold above values obtained during pH-equilibrated conditions (7.7 in = out). When 50 mM HCO3- was also present inside the vesicles, the same pH gradient (7.7 in/6.0 out) resulted in Cl- uptake to levels fourfold above pH- and HCO3--equilibrated controls and two- to threefold above Cl- equilibrium (overshoot). Initial rates of both pH and HCO3- gradient-stimulated Cl- uptake were completely inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS). A valinomycin-induced K+ diffusion potential (inside positive) also stimulated Cl- uptake in cLPM, but this conductive Cl- pathway was insensitive to DIDS. The DIDS-sensitive, pH and HCO3- gradient-stimulated Cl- uptake demonstrated: saturation with Cl- (Km approximately 6.3 mM; Vmax approximately 51 nmol X mg-1 X min-1); partial inhibition by bumetanide (26%), furosemide (33%), probenecid (37%), and 4-acetamido-4'-isothiocyano-2,2'-disulfonic acid stilbene (49%); cis-inhibition by chloride and nitrate but not by sulfate and various organic anions, and independence from the membrane potential. These data demonstrate the presence of an electroneutral Cl-:OH- and Cl-:HCO3- exchanger in rat liver canalicular membranes that favors Cl-:HCO3- exchange. In contrast, no evidence was found for the presence of a Cl-:HCO3- (OH-) exchange system in blLPM vesicles. Furthermore, neither blLPM nor cLPM vesicles exhibited Na+-stimulatable Cl- uptake, indicating the absence of a NaCl co-transport system in either LPM subfraction. These findings are consistent with a functional role for a Cl-:HCO3- (OH-) exchanger in canalicular bile formation.
为了确定阴离子交换剂是否可能在肝脏胆汁形成中发挥作用,我们在高度纯化的大鼠肝小管(c)和基底外侧(bl)质膜(LPM)囊泡中寻找Cl⁻:OH⁻和Cl⁻:HCO₃⁻交换的存在。在cLPM囊泡中,pH梯度(内部7.7/外部6.0)刺激的³⁶Cl⁻摄取量比在pH平衡条件下(内部7.7 = 外部)获得的值高出两倍。当囊泡内部也存在50 mM HCO₃⁻时,相同的pH梯度(内部7.7/外部6.0)导致Cl⁻摄取量达到比pH和HCO₃⁻平衡对照高四倍、比Cl⁻平衡(过冲)高两到三倍的水平。pH和HCO₃⁻梯度刺激的Cl⁻摄取的初始速率完全被4,4'-二异硫氰酸-2,2'-二磺酸芪(DIDS)抑制。缬氨霉素诱导的K⁺扩散电位(内部为正)也刺激了cLPM中的Cl⁻摄取,但这种传导性Cl⁻途径对DIDS不敏感。DIDS敏感的、pH和HCO₃⁻梯度刺激的Cl⁻摄取表现出:对Cl⁻饱和(Km约为6.3 mM;Vmax约为51 nmol·mg⁻¹·min⁻¹);被布美他尼(26%)、呋塞米(33%)、丙磺舒(37%)和4-乙酰氨基-4'-异硫氰酸-2,2'-二磺酸芪(49%)部分抑制;被氯离子和硝酸根顺式抑制,但不被硫酸根和各种有机阴离子抑制,且与膜电位无关。这些数据证明大鼠肝小管膜中存在一种有利于Cl⁻:HCO₃⁻交换的电中性Cl⁻:OH⁻和Cl⁻:HCO₃⁻交换剂。相比之下,在blLPM囊泡中未发现Cl⁻:HCO₃⁻(OH⁻)交换系统存在的证据。此外,blLPM和cLPM囊泡均未表现出Na⁺刺激的Cl⁻摄取,表明在任何一个LPM亚组分中都不存在NaCl共转运系统。这些发现与Cl⁻:HCO₃⁻(OH⁻)交换剂在肝小管胆汁形成中的功能作用一致。