Clinical Neuropsychology Research Group, Institute of Phonetics and Speech Processing, Ludwig-Maximilians-Universität, München, Germany.
Centre for Neurology - General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Trends Neurosci. 2017 Aug;40(8):458-468. doi: 10.1016/j.tins.2017.06.005. Epub 2017 Jul 14.
Vocal learning is an exclusively human trait among primates. However, songbirds demonstrate behavioral features resembling human speech learning. Two circuits have a preeminent role in this human behavior; namely, the corticostriatal and the cerebrocerebellar motor loops. While the striatal contribution can be traced back to the avian anterior forebrain pathway (AFP), the sensorimotor adaptation functions of the cerebellum appear to be human specific in acoustic communication. This review contributes to an ongoing discussion on how birdsong translates into human speech. While earlier approaches were focused on higher linguistic functions, we place the motor aspects of speaking at center stage. Genetic data are brought together with clinical and developmental evidence to outline the role of cerebrocerebellar and corticostriatal interactions in human speech.
发声学习是灵长类动物中人类独有的特征。然而,鸣禽表现出类似于人类言语学习的行为特征。两个回路在这种人类行为中具有突出的作用;即皮质纹状体和脑桥小脑运动回路。虽然纹状体的贡献可以追溯到禽类前脑通路(AFP),但小脑在声音交流中的感觉运动适应功能似乎是人类特有的。这篇综述有助于讨论鸟鸣如何转化为人类言语。虽然早期的方法侧重于更高的语言功能,但我们将言语的运动方面置于中心舞台。遗传数据与临床和发展证据相结合,勾勒出脑桥小脑和皮质纹状体相互作用在人类言语中的作用。