Muthalib Makii, Besson Pierre, Rothwell John, Perrey Stéphane
EuroMov, University of Montpellier, Montpellier, France.
Institute of Neurology, University College London, London, UK.
Neuromodulation. 2018 Jun;21(4):348-354. doi: 10.1111/ner.12632. Epub 2017 Jul 17.
High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain.
In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O Hb ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (L ) and "outside" (L ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (R and R ) in the right hemisphere.
The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O Hb in the L than L ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs.
The greater O Hb "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications.
先前通过建模和生理学研究表明,使用4×1电极排列的高清经颅直流电刺激(HD-tDCS)可将电场限制在电极的空间范围内。本概念验证研究的目的是确定功能近红外光谱(fNIRS)神经成像是否可用于确定这种4×1 HD-tDCS电场在大脑上的血流动力学相关性。
在一项三阶段交叉研究设计中,13名健康男性接受一次假刺激(2 mA,30秒)和两次真实刺激(HD-tDCS-1和HD-tDCS-2,2 mA,10分钟),通过4×1电极排列(阳极位于C3,4个返回电极距阳极3.5 cm)对左侧M1进行阳极HD-tDCS。两次真实的HD-tDCS刺激提供了受试者内部的结果重复。fNIRS用于测量在每次10分钟的刺激过程中,来自受刺激左半球两个感兴趣区域(ROI)的脑血流动力学变化(氧合血红蛋白积分 - O Hb),这两个区域分别对应于4×1电极排列的空间范围“内”(L )和“外”(L ),以及右半球的两个相应ROI(R 和R )。
方差分析表明,与假刺激相比,两种真实的阳极HD-tDCS刺激均使受刺激左半球的L ROI中的O Hb显著高于L ROI;而右半球ROI在真实刺激和假刺激之间没有显著差异。组内相关系数显示受刺激左半球ROI具有“中等至良好”的可重复性。
在4×1电极排列的空间范围内,“内”侧的O Hb高于“外”侧,这代表了电场分布的血流动力学相关性,因此提供了一种前瞻性可靠方法,用于确定在各种应用中优化HD-tDCS参数所需的刺激剂量。