Department of Materials Science and Engineering and ‡University of Maryland Energy Research Center, University of Maryland , College Park, Maryland 20742, United States.
Nano Lett. 2017 Aug 9;17(8):4917-4923. doi: 10.1021/acs.nanolett.7b01934. Epub 2017 Jul 20.
High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a VO cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and VO cathode was significantly decreased from 2.5 × 10 to 71 Ω·cm at room temperature and from 170 to 31 Ω·cm at 100 °C. Additionally, the diffusion resistance in the VO cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the VO cathode and garnet solid electrolyte without compromising battery safety or performance.
高温电池需要电池组件具有热稳定性,并能在高温下正常工作。传统电池存在高温安全问题,如热失控,这主要归因于液体有机电解质如低沸点和高可燃性等特性。在这项工作中,我们使用热稳定的石榴石固态电解质、锂金属阳极和 VO 阴极展示了一种真正的全固态高温电池,它可以在 100°C 下良好运行。为了解决固态电解质和阴极之间的高界面电阻问题,开发了快速热退火方法来熔化阴极并形成连续接触。结果表明,固态电解质和 VO 阴极之间的界面电阻从室温下的 2.5×10 显著降低到 100°C 下的 71 Ω·cm,从 170 降低到 31 Ω·cm。此外,VO 阴极中的扩散阻力也显著降低。所展示的高温全固态电池在 100°C 下具有 45 Ω·cm 的界面电阻和 97%的库仑效率循环。这项工作提供了一种使用石榴石固态电解质开发高温全固态电池的策略,并成功解决了 VO 阴极和石榴石固态电解质之间的高接触电阻问题,而不会影响电池的安全性或性能。