Materials Science and Engineering Program and Texas Materials Institute , The University of Texas at Austin , Austin , Texas 78712 , United States.
J Am Chem Soc. 2018 May 23;140(20):6448-6455. doi: 10.1021/jacs.8b03106. Epub 2018 May 14.
Garnet-structured LiLaZrO is a promising solid Li-ion electrolyte for all-solid-state Li-metal batteries and Li-redox-flow batteries owing to its high Li-ion conductivity at room temperature and good electrochemical stability with Li metal. However, there are still three major challenges unsolved: (1) the controversial electrochemical window of garnet, (2) the impractically large resistance at a garnet/electrode interface and the fast lithium-dendrite growth along the grain boundaries of the garnet pellet, and (3) the fast degradation during storage. We have found that these challenges are closely related to a thick LiCO layer and the Li-Al-O glass phase on the surface of garnet materials. Here we introduce a simple method to remove LiCO and the protons in the garnet framework by reacting garnet with carbon at 700 °C; moreover, the amount of the Li-Al-O glass phase with a low Li-ion conductivity in the grain boundary on the garnet surface was also reduced. The surface of the carbon-treated garnet pellets is free of LiCO and is wet by a metallic lithium anode, an organic electrolyte, and a solid composite cathode. The carbon post-treatment has reduced significantly the interfacial resistances to 28, 92 (at 65 °C), and 45 Ω cm at Li/garnet, garnet/LiFePO, and garnet/organic-liquid interfaces, respectively. A symmetric Li/garnet/Li, an all-solid-state Li/garnet/LiFePO, and a hybrid Li-S cell show small overpotentials, high Coulombic efficiencies, and stable cycling performance.
石榴石结构的 LiLaZrO 是一种很有前途的全固态 Li 金属电池和 Li 氧化还原流电池用固体 Li 离子电解质,因为它在室温下具有高 Li 离子电导率和与 Li 金属的良好电化学稳定性。然而,仍然存在三个未解决的主要挑战:(1)石榴石有争议的电化学窗口,(2)石榴石/电极界面的不切实际的大电阻和 Li 枝晶沿着石榴石颗粒边界的快速生长,以及(3)在储存过程中的快速降解。我们发现这些挑战与石榴石材料表面的厚 LiCO 层和 Li-Al-O 玻璃相密切相关。在这里,我们介绍了一种简单的方法,通过将石榴石与碳在 700°C 下反应,去除 LiCO 和石榴石骨架中的质子;此外,还减少了石榴石表面晶界中 Li 离子电导率低的 Li-Al-O 玻璃相的数量。经过碳处理的石榴石颗粒表面没有 LiCO,并且可以被 Li 金属阳极、有机电解质和固体复合阴极润湿。碳后处理将界面电阻分别降低至 28、92(在 65°C 下)和 45 Ω cm,在 Li/石榴石、石榴石/LiFePO 和石榴石/有机液体界面。对称的 Li/石榴石/Li、全固态 Li/石榴石/LiFePO 和混合 Li-S 电池显示出小的过电位、高库仑效率和稳定的循环性能。