Wang Shouzhi, Zhu Jiayan, Shao Yongliang, Li Weiran, Wu Yongzhong, Zhang Lei, Hao Xiaopeng
State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
School of Materials Science of Engineering, Shandong University, Jinan, 250100, P. R. China.
Chemistry. 2017 Mar 8;23(14):3438-3446. doi: 10.1002/chem.201605465. Epub 2017 Feb 8.
Two-dimensional atomically thick materials, reduced graphene oxide (RGO), and layered molybdenum disulfide (MoS ) have been investigated as potential novel energy storage materials because of their distinct physicochemical properties. These materials suffer, however, from rapid capacity decay and low rate capability. This study describes a facile, binder-free approach to fabricate large-scale, 3D network structured MoS @carbon nanotube (CNT)/RGO composites for application in flexible supercapacitor devices. The as-obtained composites possess a hierarchical porosity, and an interconnected framework. The electrochemical supercapacitive measurements of the MoS @CNT/RGO electrode show a high specific capacitance of 129 mF cm at 0.1 mA cm . The symmetric supercapacitor devices based on the as-obtained composites exhibit a long lifetime (94.7 % capacitance retention after 10 000 cycles), and a high electrochemical performance (29.7 mF cm ). The present experimental findings will lead to scalable, binder-free synthesis of MoS @CNT/RGO hybrid electrodes, with enhanced, flexible, supercapacitive performance, in portable and wearable energy storage devices.
二维原子级厚度材料、还原氧化石墨烯(RGO)和层状二硫化钼(MoS₂)因其独特的物理化学性质而被作为潜在的新型储能材料进行了研究。然而,这些材料存在容量快速衰减和倍率性能低的问题。本研究描述了一种简便的、无粘结剂的方法来制备用于柔性超级电容器器件的大规模三维网络结构MoS₂@碳纳米管(CNT)/RGO复合材料。所制备的复合材料具有分级孔隙率和相互连接的框架结构。MoS₂@CNT/RGO电极的电化学超级电容测量结果表明,在0.1 mA cm⁻²时具有129 mF cm⁻²的高比电容。基于所制备复合材料的对称超级电容器器件具有长寿命(10000次循环后电容保持率为94.7%)和高电化学性能(29.7 mF cm⁻²)。本实验结果将导致在便携式和可穿戴储能器件中可扩展地、无粘结剂地合成具有增强的、柔性的超级电容性能的MoS₂@CNT/RGO混合电极。