Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
ACS Appl Mater Interfaces. 2018 Apr 4;10(13):11008-11017. doi: 10.1021/acsami.8b01938. Epub 2018 Mar 21.
Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.
将柔性透明电极材料简单且易于集成到聚合物基底上的设计有望对许多未来消费电子产品的储能器件的功能和性能产生革命性的影响。这些应用包括触摸传感器、可卷曲显示器、光伏电池、健康监测器、无线传感器和可穿戴通信设备。在这里,我们报告了一种环保、简单且通用的方法来制备具有光学透明性和机械柔韧性的全固态超级电容器器件。这些超级电容器是通过在掺锡氧化铟(ITO)涂覆的聚对苯二甲酸乙二醇酯(PET)基底上的两个还原氧化石墨烯(rGO)薄膜电极之间插入聚合物凝胶电解质来构建的。rGO 电极通过简单的滴涂氧化石墨烯(GO)薄膜来制备,然后采用新颖的低温(≤250°C)真空辅助退火方法原位还原 GO 为 rGO。通过初始分散体中 GO 的浓度来确定光学透明度和电化学性能之间的权衡,其中最高电容(约 650 μF cm)出现在相对较低的光学透明度(24%)下。值得注意的是,全固态超级电容器表现出优异的机械柔韧性,在各种弯曲角度和循环下的容量保持率超过 90%。这些特性强调了本方法在实现基于薄膜的超级电容器作为各种实际应用的灵活透明储能器件方面的潜力。