Suppr超能文献

植物精氨酸酶的双重功能为腐胺合成提供了第三条途径。

Dual functioning of plant arginases provides a third route for putrescine synthesis.

作者信息

Patel Jigar, Ariyaratne Menaka, Ahmed Sheaza, Ge Lingxiao, Phuntumart Vipaporn, Kalinoski Andrea, Morris Paul F

机构信息

Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States.

Department of Surgery, University of Toledo, 3000 Arlington Ave, Toledo, OH 43614, United States.

出版信息

Plant Sci. 2017 Sep;262:62-73. doi: 10.1016/j.plantsci.2017.05.011. Epub 2017 Jun 1.

Abstract

Two biosynthetic routes are known for putrescine, an essential plant metabolite. Ornithine decarboxylase (ODC) converts ornithine directly to putrescine, while a second route for putrescine biosynthesis utilizes arginine decarboxylase (ADC) to convert arginine to agmatine, and two additional enzymes, agmatine iminohydrolase (AIH) and N-carbamoyl putrescine aminohydrolase (NLP1) to complete this pathway. Here we show that plants can use ADC and arginase/agmatinase (ARGAH) as a third route for putrescine synthesis. Transformation of Arabidopsis thaliana ADC2, and any of the arginases from A. thaliana (ARGAH1, or ARGHA2) or the soybean gene Glyma.03g028000 (GmARGAH) into a yeast strain deficient in ODC, fully complemented the mutant phenotype. In vitro assays using purified recombinant enzymes of AtADC1 and AtARGAH2 were used to show that these enzymes can function in concert to convert arginine to agmatine and putrescine. Transient expression analysis of the soybean genes (Glyma.06g007500, ADC; Glyma.03g028000 GmARGAH) and the A. thaliana ADC2 and ARGAH genes in leaves of Nicotiana benthamiana, showed that these proteins are localized to the chloroplast. Experimental support for this pathway also comes from the fact that expression of AtARGAH, but not AtAIH or AtNLP1, is co-regulated with AtADC2 in response to drought, oxidative stress, wounding, and methyl jasmonate treatments. Based on the high affinity of ARGAH2 for agmatine, its co-localization with ADC2, and typically low arginine levels in many plant tissues, we propose that these two enzymes can be major contributors to putrescine synthesis in many A. thaliana stress responses.

摘要

腐胺是一种重要的植物代谢物,已知其有两条生物合成途径。鸟氨酸脱羧酶(ODC)可将鸟氨酸直接转化为腐胺,而腐胺生物合成的第二条途径则利用精氨酸脱羧酶(ADC)将精氨酸转化为胍丁胺,以及另外两种酶,即胍丁胺亚氨基水解酶(AIH)和N-氨甲酰腐胺氨基水解酶(NLP1)来完成这条途径。在此我们表明,植物可以利用ADC和精氨酸酶/胍丁胺酶(ARGAH)作为腐胺合成的第三条途径。将拟南芥ADC2以及拟南芥的任何一种精氨酸酶(ARGAH1或ARGHA2)或大豆基因Glyma.03g028000(GmARGAH)转化到缺乏ODC的酵母菌株中,完全互补了突变表型。使用纯化的AtADC1和AtARGAH2重组酶进行的体外测定表明,这些酶可以协同作用将精氨酸转化为胍丁胺和腐胺。对大豆基因(Glyma.06g007500,ADC;Glyma.03g028000,GmARGAH)以及拟南芥ADC2和ARGAH基因在本氏烟草叶片中的瞬时表达分析表明,这些蛋白质定位于叶绿体。这条途径的实验证据还来自于以下事实:AtARGAH的表达,而非AtAIH或AtNLP1的表达,在干旱、氧化应激、创伤和茉莉酸甲酯处理下与AtADC2共同受到调控。基于ARGAH2对胍丁胺的高亲和力、其与ADC2的共定位以及许多植物组织中通常较低的精氨酸水平,我们提出这两种酶可能是许多拟南芥应激反应中腐胺合成的主要贡献者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验