Matsuda Yusuke, Hopkinson Brian M, Nakajima Kensuke, Dupont Christopher L, Tsuji Yoshinori
Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 5;372(1728). doi: 10.1098/rstb.2016.0403.
Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO fixation. The evolution of a CO-concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO] in seawater relative to concentrations required by the CO fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO in water and a limited CO formation rate from [Formula: see text] in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of [Formula: see text] through plasma-membrane type solute carrier (SLC) 4 family [Formula: see text] transporters and the other is more reliant on passive diffusion of CO formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO only in close proximity to RubisCO preventing unnecessary CO leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal θ-CA indicates that the strategy to supply CO to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are discussed.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
硅藻是最成功的海洋真核藻类群体之一,每年全球碳固定量的20% 都由其贡献。二氧化碳浓缩机制(CCM)的进化使硅藻能够克服海洋环境中光合作用面临的一些严重限制,特别是海水中的[CO]相对于二氧化碳固定酶核酮糖-1,5-二磷酸羧化酶/加氧酶(RubisCO)所需浓度较低,部分原因是CO在水中的扩散速率较慢以及海水中[公式:见正文]的CO形成速率有限。硅藻采用两种替代策略从环境中吸收溶解无机碳(DIC):一种主要依赖于通过质膜型溶质载体(SLC)4家族[公式:见正文]转运蛋白直接吸收[公式:见正文],另一种则更依赖于外部碳酸酐酶(CA)形成的CO的被动扩散。摄入细胞质中的碳酸氢根很可能随后通过叶绿体膜系统上的SLC4型转运蛋白被主动转运到叶绿体基质中。基质中的碳酸氢根仅在靠近RubisCO的位置转化为CO,以防止不必要的CO泄漏。CA在将DIC逐步转移到固定位点的过程中发挥着重要作用。然而,不同硅藻之间CA的进化类型和亚细胞定位并不保守,这有力地表明这种DIC转移策略可能有多个不同起源且多次进化。相比之下,最近类囊体腔θ-CA的发现表明,向蛋白核中的RubisCO供应CO的策略可能与绿藻非常相似,并且有力地表明类囊体腔CCM功能不仅在硅藻之间,而且在一般真核藻类之间都存在趋同协同进化。在这篇综述中,将讨论硅藻CCM的实验模型和相应的理论模型。本文是主题为“硅藻独特的碳代谢”的特刊的一部分。