Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan.
J Exp Bot. 2017 Jun 1;68(14):3763-3772. doi: 10.1093/jxb/erx173.
Diatoms operate a CO2-concentrating mechanism (CCM) that drives upwards of 20% of annual global primary production. Recent progress in CCM research in the marine pennate diatom Phaeodactylum tricornutum revealed that this diatom directly takes up HCO3- from seawater through low-CO2-inducible plasma membrane HCO3- transporters, which belong to the solute carrier (SLC) 4 family. Apart from this, studies of carbonic anhydrases (CAs) in diatoms have revealed considerable diversity in classes and localization among species. This strongly suggests that the CA systems, which control permeability and flux of dissolved inorganic carbon (DIC) by catalysing reversible CO2 hydration, have evolved from diverse origins. Of particular interest is the occurrence of low-CO2-inducible external CAs in the centric marine diatom Thalassiosira pseudonana, offering a strategy of CA-catalysed initial CO2 entry via passive diffusion, contrasting with active DIC transport in P. tricornutum. Molecular mechanisms to transport DIC across chloroplast envelopes are likely also through specific HCO3- transporters, although details have yet to be elucidated. Furthermore, recent discovery of a luminal θ-CA in the diatom thylakoid implied a common strategy in the mechanism to supply CO2 to RubisCO in the pyrenoid, which is conserved among green algae and some heterokontophytes. These results strongly suggest an occurrence of convergent coevolution between the pyrenoid and thylakoid membrane in aquatic photosynthesis.
硅藻通过一种二氧化碳浓缩机制(CCM)来驱动全球 20%以上的年初级生产力,这种机制最近在海洋舟形藻(Phaeodactylum tricornutum)的研究中取得了进展。该研究发现,这种硅藻可以通过低 CO2 诱导的质膜 HCO3-转运蛋白从海水中直接摄取 HCO3-,这些蛋白属于溶质载体(SLC)4 家族。除此之外,对硅藻碳酸酐酶(CA)的研究揭示了不同物种中 CA 种类和定位的巨大多样性。这强烈表明,CA 系统通过催化可逆的 CO2 水合作用来控制溶解无机碳(DIC)的通透性和通量,其起源是多种多样的。特别值得注意的是,在中心纲海洋硅藻拟菱形藻(Thalassiosira pseudonana)中存在低 CO2 诱导的外部 CA,这为 CA 催化的初始 CO2 通过被动扩散进入提供了一种策略,与舟形藻(P. tricornutum)中主动的 DIC 转运形成对比。穿过叶绿体包膜运输 DIC 的分子机制也可能是通过特定的 HCO3-转运蛋白,尽管细节尚未阐明。此外,最近在硅藻类囊体中发现了腔内θ-CA,这意味着在为淀粉核中的 RubisCO 供应 CO2 的机制中存在一种共同策略,这种策略在绿藻和一些不等鞭毛类生物中是保守的。这些结果强烈表明,水生光合作用中淀粉核和类囊体膜之间存在趋同协同进化。