Price Hannah C, Mattsson Johan, Zhang Yue, Bertram Allan K, Davies James F, Grayson James W, Martin Scot T, O'Sullivan Daniel, Reid Jonathan P, Rickards Andrew M J, Murray Benjamin J
School of Earth and Environment , University of Leeds , Leeds , LS2 9JT , UK . Email:
School of Physics and Astronomy , University of Leeds , Leeds , LS2 9JT , UK.
Chem Sci. 2015 Aug 1;6(8):4876-4883. doi: 10.1039/c5sc00685f. Epub 2015 Jun 4.
Secondary organic material (SOM) constitutes a large mass fraction of atmospheric aerosol particles. Understanding its impact on climate and air quality relies on accurate models of interactions with water vapour. Recent research shows that SOM can be highly viscous and can even behave mechanically like a solid, leading to suggestions that particles exist out of equilibrium with water vapour in the atmosphere. In order to quantify any kinetic limitation we need to know water diffusion coefficients for SOM, but this quantity has, until now, only been estimated and has not yet been measured. We have directly measured water diffusion coefficients in the water soluble fraction of α-pinene SOM between 240 and 280 K. Here we show that, although this material can behave mechanically like a solid, at 280 K water diffusion is not kinetically limited on timescales of 1 s for atmospheric-sized particles. However, diffusion slows as temperature decreases. We use our measured data to constrain a Vignes-type parameterisation, which we extend to lower temperatures to show that SOM can take hours to equilibrate with water vapour under very cold conditions. Our modelling for 100 nm particles predicts that under mid- to upper-tropospheric conditions radial inhomogeneities in water content produce a low viscosity surface region and more solid interior, with implications for heterogeneous chemistry and ice nucleation.
二次有机物质(SOM)在大气气溶胶颗粒中占很大的质量分数。了解其对气候和空气质量的影响依赖于与水蒸气相互作用的精确模型。最近的研究表明,SOM可能具有很高的粘性,甚至在机械性能上表现得像固体,这导致有人提出大气中的颗粒与水蒸气处于非平衡状态。为了量化任何动力学限制,我们需要知道SOM的水扩散系数,但到目前为止,这个量只是被估计过,尚未被测量。我们直接测量了α-蒎烯SOM水溶性部分在240至280K之间的水扩散系数。在此我们表明,尽管这种物质在机械性能上可以表现得像固体,但在280K时,对于大气尺寸的颗粒,在1秒的时间尺度上,水扩散在动力学上不受限制。然而,随着温度降低,扩散会减慢。我们利用测量数据来约束一个Vignes型参数化,将其扩展到更低温度以表明在非常寒冷的条件下,SOM与水蒸气达到平衡可能需要数小时。我们对100纳米颗粒的模拟预测,在对流层中上部条件下,含水量的径向不均匀性会产生一个低粘度的表面区域和更固态的内部,这对非均相化学和冰核形成有影响。