Song Young-Chul, Ingram Stephen, Arbon Robert E, Topping David O, Glowacki David R, Reid Jonathan P
School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
Centre for Computational Chemistry, University of Bristol Cantock's Close BS8 1TS UK.
Chem Sci. 2020 Feb 17;11(11):2999-3006. doi: 10.1039/c9sc06228a.
The diffusion of small molecules through viscous matrices formed by large organic molecules is important across a range of domains, including pharmaceutical science, materials chemistry, and atmospheric science, impacting on, for example, the formation of amorphous and crystalline phases. Here we report significant breakdowns in the Stokes-Einstein (SE) equation from measurements of the diffusion of water (spanning 5 decades) and viscosity (spanning 12 decades) in saccharide aerosol droplets. Molecular dynamics simulations show water diffusion is not continuous, but proceeds by discrete hops between transient cavities that arise and dissipate as a result of dynamical fluctuations within the saccharide lattice. The ratio of transient cavity volume to solvent volume increases with size of molecules making up the lattice, increasing divergence from SE predictions. This improved mechanistic understanding of diffusion in viscous matrices explains, for example, why organic compounds equilibrate according to SE predictions and water equilibrates more rapidly in aerosols.
小分子在由大有机分子形成的粘性基质中的扩散在一系列领域都很重要,包括制药科学、材料化学和大气科学,例如会影响无定形相和结晶相的形成。在此,我们通过对糖气溶胶液滴中水(跨越5个数量级)和粘度(跨越12个数量级)扩散的测量,报告了斯托克斯 - 爱因斯坦(SE)方程的显著偏差。分子动力学模拟表明,水的扩散不是连续的,而是通过在糖晶格内动态波动产生和消散的瞬态空穴之间的离散跳跃进行的。瞬态空穴体积与溶剂体积之比随构成晶格的分子大小增加而增加,与SE预测的偏差也随之增大。这种对粘性基质中扩散的改进的机理理解解释了,例如,为什么有机化合物根据SE预测达到平衡,而水在气溶胶中达到平衡的速度更快。