Suppr超能文献

EyeSLAM:眼内显微手术期间视网膜血管的实时同步定位与映射

EyeSLAM: Real-time simultaneous localization and mapping of retinal vessels during intraocular microsurgery.

作者信息

Braun Daniel, Yang Sungwook, Martel Joseph N, Riviere Cameron N, Becker Brian C

机构信息

The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Int J Med Robot. 2018 Feb;14(1). doi: 10.1002/rcs.1848. Epub 2017 Jul 18.

Abstract

BACKGROUND

Fast and accurate mapping and localization of the retinal vasculature is critical to increasing the effectiveness and clinical utility of robot-assisted intraocular microsurgery such as laser photocoagulation and retinal vessel cannulation.

METHODS

The proposed EyeSLAM algorithm delivers 30 Hz real-time simultaneous localization and mapping of the human retina and vasculature during intraocular surgery, combining fast vessel detection with 2D scan-matching techniques to build and localize a probabilistic map of the vasculature.

RESULTS

In the harsh imaging environment of retinal surgery with high magnification, quick shaky motions, textureless retina background, variable lighting and tool occlusion, EyeSLAM can map 75% of the vessels within two seconds of initialization and localize the retina in real time with a root mean squared (RMS) error of under 5.0 pixels (translation) and 1° (rotation).

CONCLUSIONS

EyeSLAM robustly provides retinal maps and registration that enable intelligent surgical micromanipulators to aid surgeons in simulated retinal vessel tracing and photocoagulation tasks.

摘要

背景

视网膜血管系统的快速、精确映射和定位对于提高机器人辅助眼内显微手术(如激光光凝和视网膜血管插管)的有效性和临床实用性至关重要。

方法

所提出的EyeSLAM算法在眼内手术期间以30赫兹的频率实时同步定位和映射人眼视网膜及血管系统,将快速血管检测与二维扫描匹配技术相结合,以构建和定位血管系统的概率地图。

结果

在高放大倍数、快速抖动、视网膜背景无纹理、光照变化和工具遮挡等恶劣的视网膜手术成像环境中,EyeSLAM能够在初始化两秒内映射75%的血管,并以低于5.0像素(平移)和1°(旋转)的均方根误差实时定位视网膜。

结论

EyeSLAM能够稳健地提供视网膜地图和配准,使智能手术微操作器能够在模拟视网膜血管追踪和光凝任务中辅助外科医生。

相似文献

1
EyeSLAM: Real-time simultaneous localization and mapping of retinal vessels during intraocular microsurgery.
Int J Med Robot. 2018 Feb;14(1). doi: 10.1002/rcs.1848. Epub 2017 Jul 18.
2
EyeSAM: graph-based localization and mapping of retinal vasculature during intraocular microsurgery.
Int J Comput Assist Radiol Surg. 2019 May;14(5):819-828. doi: 10.1007/s11548-019-01925-1. Epub 2019 Feb 21.
3
Handheld-automated microsurgical instrumentation for intraocular laser surgery.
Lasers Surg Med. 2015 Oct;47(8):658-68. doi: 10.1002/lsm.22383. Epub 2015 Aug 19.
4
Semiautomated intraocular laser surgery using handheld instruments.
Lasers Surg Med. 2010 Mar;42(3):264-73. doi: 10.1002/lsm.20897.
5
FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:13-6. doi: 10.1109/EMBC.2015.7318249.
6
Feasibility study on robot-assisted retinal vascular bypass surgery in an ex vivo porcine model.
Acta Ophthalmol. 2017 Sep;95(6):e462-e467. doi: 10.1111/aos.13457. Epub 2017 Jun 9.
7
Cooperative robot assistant for retinal microsurgery.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):543-50. doi: 10.1007/978-3-540-85990-1_65.
8
'The Microhand': a new concept of micro-forceps for ocular robotic surgery.
Eye (Lond). 2010 Feb;24(2):364-7. doi: 10.1038/eye.2009.47. Epub 2009 Mar 20.
9
Real-time algorithm for retinal tracking.
IEEE Trans Biomed Eng. 1993 Dec;40(12):1269-81. doi: 10.1109/10.250583.
10
Cooperative robot assistant for vitreoretinal microsurgery: development of the RVRMS and feasibility studies in an animal model.
Graefes Arch Clin Exp Ophthalmol. 2017 Jun;255(6):1167-1171. doi: 10.1007/s00417-017-3656-3. Epub 2017 Apr 8.

引用本文的文献

1
Sensor-driven digital motion correction of robotically-aligned optical coherence tomography retinal volumes.
Biomed Opt Express. 2025 Mar 26;16(4):1616-1637. doi: 10.1364/BOE.551186. eCollection 2025 Apr 1.
3
Joint keypoint detection and description network for color fundus image registration.
Quant Imaging Med Surg. 2023 Jul 1;13(7):4540-4562. doi: 10.21037/qims-23-4. Epub 2023 May 26.
5
Reliable and stable fundus image registration based on brain-inspired spatially-varying adaptive pyramid context aggregation network.
Front Neurosci. 2023 Jan 16;16:1117134. doi: 10.3389/fnins.2022.1117134. eCollection 2022.
6
Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives.
Proc IEEE Inst Electr Electron Eng. 2022 Jul;110(7):893-908. doi: 10.1109/JPROC.2022.3169466. Epub 2022 May 9.
7
FBG-based Kalman Filtering and Control of Tool Insertion Depth For Safe Robot-assisted Vitrectomy.
Int Symp Med Robot. 2020 Nov;2020. doi: 10.1109/ismr48331.2020.9312931. Epub 2021 Jan 11.
8
Stochastic Force-based Insertion Depth and Tip Position Estimations of Flexible FBG-Equipped Instruments in Robotic Retinal Surgery.
IEEE ASME Trans Mechatron. 2021 Jun;26(3):1512-1523. doi: 10.1109/tmech.2020.3022830. Epub 2020 Sep 8.
9
Adaptive Control Improves Sclera Force Safety in Robot-Assisted Eye Surgery: A Clinical Study.
IEEE Trans Biomed Eng. 2021 Nov;68(11):3356-3365. doi: 10.1109/TBME.2021.3071135. Epub 2021 Oct 19.
10
Automatic Light Pipe Actuating System for Bimanual Robot-Assisted Retinal Surgery.
IEEE ASME Trans Mechatron. 2020 Dec;25(6):2846-2857. doi: 10.1109/tmech.2020.2996683. Epub 2020 May 22.

本文引用的文献

1
Handheld-automated microsurgical instrumentation for intraocular laser surgery.
Lasers Surg Med. 2015 Oct;47(8):658-68. doi: 10.1002/lsm.22383. Epub 2015 Aug 19.
2
Manipulator Design and Operation for a Six-Degree-of-Freedom Handheld Tremor-Canceling Microsurgical Instrument.
IEEE ASME Trans Mechatron. 2015 Apr;20(2):761-772. doi: 10.1109/TMECH.2014.2320858.
3
Fundus image mosaicking for information augmentation in computer-assisted slit-lamp imaging.
IEEE Trans Med Imaging. 2014 Jun;33(6):1304-12. doi: 10.1109/TMI.2014.2309440. Epub 2014 Mar 3.
4
Vision-Based Control of a Handheld Surgical Micromanipulator with Virtual Fixtures.
IEEE Trans Robot. 2013 Feb 19;29(3):674-683. doi: 10.1109/TRO.2013.2239552.
5
Real-Time Retinal Vessel Mapping and Localization for Intraocular Surgery.
IEEE Int Conf Robot Autom. 2013:5360-5365. doi: 10.1109/ICRA.2013.6631345.
6
Unified detection and tracking of instruments during retinal microsurgery.
IEEE Trans Pattern Anal Mach Intell. 2013 May;35(5):1263-73. doi: 10.1109/TPAMI.2012.209.
7
Fast retinal vessel detection and measurement using wavelets and edge location refinement.
PLoS One. 2012;7(3):e32435. doi: 10.1371/journal.pone.0032435. Epub 2012 Mar 12.
8
Real-time multimodal retinal image registration for a computer-assisted laser photocoagulation system.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2816-24. doi: 10.1109/TBME.2011.2159860. Epub 2011 Jun 16.
9
New Steady-Hand Eye Robot with Micro-Force Sensing for Vitreoretinal Surgery.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2010 Sep 1;2010(26-29):814-819. doi: 10.1109/BIOROB.2010.5625991.
10
Single-camera focus-based localization of intraocular devices.
IEEE Trans Biomed Eng. 2010 Aug;57(8):2064-74. doi: 10.1109/TBME.2010.2044177. Epub 2010 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验