Suppr超能文献

基于传感器驱动的机器人对准光学相干断层扫描视网膜容积的数字运动校正

Sensor-driven digital motion correction of robotically-aligned optical coherence tomography retinal volumes.

作者信息

Ortiz Pablo, Narawane Amit, McNabb Ryan P, Kuo Anthony N, Izatt Joseph A, Draelos Mark

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

Department of Ophthalmology, Duke University, Durham, NC 27708, USA.

出版信息

Biomed Opt Express. 2025 Mar 26;16(4):1616-1637. doi: 10.1364/BOE.551186. eCollection 2025 Apr 1.

Abstract

Optical coherence tomography (OCT) has revolutionized diagnostics in retinal ophthalmology. Traditional OCT requires minimal relative motion between the subject and scanner, which is difficult to achieve with handheld devices and/or non-stabilized subjects. We recently introduced robotically-aligned OCT (RAOCT) as an alternative that promises to alleviate these minimal-movement requirements by tracking the subject and compensating for their motion with dynamic hardware components in real-time. However, hardware and image processing delays lead to residual motion artifacts even after automatic alignment and motion compensation. Here, we introduce a novel sensor-driven digital motion correction approach that overcomes these shortcomings. Our method leverages synchronized sensing of both the subject's eye and the scanner hardware to continuously estimate the imaging system state during acquisition. The A-scans are then remapped using a ray-tracing model of the system at the precise moment of acquisition. We demonstrate that, in addition to motion compensation from RAOCT, our method further reduces residual artifacts by 88.3 %, 80.4 %, and 62.6 % across axial, lateral, and rotational motions, respectively. We also show our correction in human retinal OCT images where residual errors from acquisition were reduced down to 12.4 µm, 0.11°, and 0.39° for axial, lateral, and rotational motion, respectively.

摘要

光学相干断层扫描(OCT)彻底改变了视网膜眼科的诊断方式。传统的OCT要求受试者与扫描仪之间的相对运动最小,而这对于手持设备和/或不稳定的受试者来说很难实现。我们最近推出了机器人对准OCT(RAOCT)作为一种替代方案,有望通过跟踪受试者并利用动态硬件组件实时补偿其运动来减轻这些最小运动要求。然而,即使经过自动对准和运动补偿,硬件和图像处理延迟仍会导致残留运动伪影。在此,我们介绍一种新颖的传感器驱动数字运动校正方法,该方法克服了这些缺点。我们的方法利用对受试者眼睛和扫描仪硬件的同步传感,在采集过程中持续估计成像系统状态。然后在采集的精确时刻,使用系统的光线追踪模型对A扫描进行重新映射。我们证明,除了RAOCT的运动补偿外,我们的方法在轴向、横向和旋转运动中分别进一步将残留伪影减少了88.3%、80.4%和62.6%。我们还展示了在人类视网膜OCT图像中的校正效果,其中采集产生的残留误差在轴向、横向和旋转运动中分别降低到了12.4µm、0.11°和0.39°。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb6/12047723/5c9fc194e0bd/boe-16-4-1616-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验