Becker Brian C, MacLachlan Robert A, Lobes Louis A, Riviere Cameron N
The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA.
Lasers Surg Med. 2010 Mar;42(3):264-73. doi: 10.1002/lsm.20897.
In laser retinal photocoagulation, hundreds of dot-like burns are applied. We introduce a robot-assisted technique to enhance the accuracy and reduce the tedium of the procedure.
Laser burn locations are overlaid on preoperative retinal images using common patterns such as grids. A stereo camera/monitor setup registers and displays the planned burn locations overlaid on real-time video. Using an active handheld micromanipulator, a 7 x 7 grid of burns spaced 650 microm apart is applied to both paper slides and porcine retina in vitro using 30 milliseconds laser pulses at 532 nm. Two scenarios were tested: unaided, in which the micromanipulator is inert and the laser fires at a fixed frequency, and aided, in which the micromanipulator actively targets burn locations and the laser fires automatically upon target acquisition. Error is defined as the distance from the center of the observed burn mark to the preoperatively selected target location.
An experienced retinal surgeon performed trials with and without robotic assistance, on both paper slides and porcine retina in vitro. In the paper slide experiments at an unaided laser repeat rate of 0.5 Hz, error was 125+/-62 microm with robotic assistance and 149+/-76 microm without (P < 0.005), and trial duration was 70+/-8 seconds with robotic assistance and 97+/-7 seconds without (P < 0.005). At a repeat rate of 1.0 Hz, error was 129+/-69 microm with robotic assistance and 166+/-91 microm without (P < 0.005), and trial duration was 26+/-4 seconds with robotic assistance and 47+/-1 seconds without (P < 0.005). At a repeat rate of 2.0 Hz on porcine retinal tissue, error was 123+/-69 microm with robotic assistance and 203+/-104 microm without (P < 0.005).
Robotic assistance can increase the accuracy of laser photocoagulation while reducing the duration of the operation.
在激光视网膜光凝术中,要进行数百次点状烧灼。我们引入一种机器人辅助技术,以提高手术的准确性并减少其乏味程度。
使用网格等常见图案将激光烧灼位置叠加在术前视网膜图像上。立体相机/监视器设置记录并显示叠加在实时视频上的计划烧灼位置。使用主动式手持微操作器,在体外对载玻片和猪视网膜施加间距为650微米的7×7网格烧灼,使用532纳米的30毫秒激光脉冲。测试了两种情况:无辅助,即微操作器静止且激光以固定频率发射;有辅助,即微操作器主动瞄准烧灼位置且激光在目标获取后自动发射。误差定义为观察到的烧灼痕迹中心到术前选定目标位置的距离。
一位经验丰富的视网膜外科医生在有和没有机器人辅助的情况下,对体外的载玻片和猪视网膜进行了试验。在载玻片实验中,无辅助时激光重复频率为0.5赫兹,有机器人辅助时误差为125±62微米,无辅助时为149±76微米(P<0.005),有机器人辅助时试验持续时间为70±8秒,无辅助时为97±7秒(P<0.005)。重复频率为1.0赫兹时,有机器人辅助时误差为129±69微米,无辅助时为166±91微米(P<0.005),有机器人辅助时试验持续时间为26±4秒,无辅助时为47±1秒(P<0.005)。在猪视网膜组织上重复频率为2.0赫兹时,有机器人辅助时误差为123±69微米,无辅助时为203±104微米(P<0.005)。
机器人辅助可提高激光光凝的准确性,同时缩短手术时间。