文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于知识转移学习的基质金属蛋白酶底物切割位点预测。

Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites.

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China.

Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.

出版信息

Sci Rep. 2017 Jul 18;7(1):5755. doi: 10.1038/s41598-017-06219-7.


DOI:10.1038/s41598-017-06219-7
PMID:28720874
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5515926/
Abstract

Matrix Metalloproteases (MMPs) are an important family of proteases that play crucial roles in key cellular and disease processes. Therefore, MMPs constitute important targets for drug design, development and delivery. Advanced proteomic technologies have identified type-specific target substrates; however, the complete repertoire of MMP substrates remains uncharacterized. Indeed, computational prediction of substrate-cleavage sites associated with MMPs is a challenging problem. This holds especially true when considering MMPs with few experimentally verified cleavage sites, such as for MMP-2, -3, -7, and -8. To fill this gap, we propose a new knowledge-transfer computational framework which effectively utilizes the hidden shared knowledge from some MMP types to enhance predictions of other, distinct target substrate-cleavage sites. Our computational framework uses support vector machines combined with transfer machine learning and feature selection. To demonstrate the value of the model, we extracted a variety of substrate sequence-derived features and compared the performance of our method using both 5-fold cross-validation and independent tests. The results show that our transfer-learning-based method provides a robust performance, which is at least comparable to traditional feature-selection methods for prediction of MMP-2, -3, -7, -8, -9 and -12 substrate-cleavage sites on independent tests. The results also demonstrate that our proposed computational framework provides a useful alternative for the characterization of sequence-level determinants of MMP-substrate specificity.

摘要

基质金属蛋白酶(MMPs)是一类重要的蛋白酶,在关键的细胞和疾病过程中发挥着至关重要的作用。因此,MMPs 成为药物设计、开发和输送的重要靶点。先进的蛋白质组学技术已经确定了特定类型的靶标底物;然而,MMP 底物的完整组成仍未被描述。事实上,与 MMP 相关的底物切割位点的计算预测是一个具有挑战性的问题。当考虑到 MMP-2、-3、-7 和 -8 等具有少数经实验验证的切割位点的 MMP 时,尤其如此。为了填补这一空白,我们提出了一种新的知识转移计算框架,该框架有效地利用了一些 MMP 类型的隐藏共享知识,以增强对其他不同靶标底物切割位点的预测。我们的计算框架使用支持向量机结合转移机器学习和特征选择。为了证明模型的价值,我们提取了各种底物序列衍生的特征,并使用 5 倍交叉验证和独立测试比较了我们方法的性能。结果表明,我们的基于转移学习的方法提供了稳健的性能,至少与传统的特征选择方法相当,可用于预测 MMP-2、-3、-7、-8、-9 和 -12 的独立测试中的底物切割位点。结果还表明,我们提出的计算框架为 MMP 底物特异性的序列水平决定因素的表征提供了一种有用的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/e14cc5269a7b/41598_2017_6219_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/c1daa50a96df/41598_2017_6219_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/7aa5afb93502/41598_2017_6219_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/c9c7ff9d1336/41598_2017_6219_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/b977e102af1a/41598_2017_6219_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/f3b229e336e8/41598_2017_6219_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/e14cc5269a7b/41598_2017_6219_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/c1daa50a96df/41598_2017_6219_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/7aa5afb93502/41598_2017_6219_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/c9c7ff9d1336/41598_2017_6219_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/b977e102af1a/41598_2017_6219_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/f3b229e336e8/41598_2017_6219_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aadb/5515926/e14cc5269a7b/41598_2017_6219_Fig6_HTML.jpg

相似文献

[1]
Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites.

Sci Rep. 2017-7-18

[2]
Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.

Matrix Biol. 2016-1

[3]
PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

PLoS One. 2012-11-29

[4]
The roles of substrate thermal stability and P2 and P1' subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity.

J Biol Chem. 2006-12-15

[5]
High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family.

Chem Biol. 2015-8-20

[6]
Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity.

Biochem J. 2014-1-15

[7]
Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.

Brief Bioinform. 2019-11-27

[8]
Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.

Genomics Proteomics Bioinformatics. 2020-5-12

[9]
CleavPredict: A Platform for Reasoning about Matrix Metalloproteinases Proteolytic Events.

PLoS One. 2015-5-21

[10]
DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites.

Bioinformatics. 2020-2-15

引用本文的文献

[1]
Molecular basis of proteolytic cleavage regulation by the extracellular matrix receptor dystroglycan.

Structure. 2024-11-7

[2]
Machine Learning Approaches for Metalloproteins.

Molecules. 2022-2-14

[3]
Predicting Proteolysis in Complex Proteomes Using Deep Learning.

Int J Mol Sci. 2021-3-17

[4]
SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.

BMC Bioinformatics. 2019-11-21

[5]
Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.

Brief Bioinform. 2019-11-27

[6]
iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.

Brief Bioinform. 2019-3-25

本文引用的文献

[1]
Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors.

Nucleic Acids Res. 2016-1-4

[2]
Matrix Metalloproteinase 1 Causes Vasoconstriction and Enhances Vessel Reactivity to Angiotensin II via Protease-Activated Receptor 1.

Reprod Sci. 2015-10-4

[3]
Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.

Matrix Biol. 2016-1

[4]
High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family.

Chem Biol. 2015-8-20

[5]
CleavPredict: A Platform for Reasoning about Matrix Metalloproteinases Proteolytic Events.

PLoS One. 2015-5-21

[6]
Proteomic approaches to uncover MMP function.

Matrix Biol. 2015-1-17

[7]
DISOPRED3: precise disordered region predictions with annotated protein-binding activity.

Bioinformatics. 2015-3-15

[8]
Pericellular proteolysis in cancer.

Genes Dev. 2014-11-1

[9]
Basis for substrate recognition and distinction by matrix metalloproteinases.

Proc Natl Acad Sci U S A. 2014-10-7

[10]
Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features.

Brief Bioinform. 2015-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索