Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China.
Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
Sci Rep. 2017 Jul 18;7(1):5755. doi: 10.1038/s41598-017-06219-7.
Matrix Metalloproteases (MMPs) are an important family of proteases that play crucial roles in key cellular and disease processes. Therefore, MMPs constitute important targets for drug design, development and delivery. Advanced proteomic technologies have identified type-specific target substrates; however, the complete repertoire of MMP substrates remains uncharacterized. Indeed, computational prediction of substrate-cleavage sites associated with MMPs is a challenging problem. This holds especially true when considering MMPs with few experimentally verified cleavage sites, such as for MMP-2, -3, -7, and -8. To fill this gap, we propose a new knowledge-transfer computational framework which effectively utilizes the hidden shared knowledge from some MMP types to enhance predictions of other, distinct target substrate-cleavage sites. Our computational framework uses support vector machines combined with transfer machine learning and feature selection. To demonstrate the value of the model, we extracted a variety of substrate sequence-derived features and compared the performance of our method using both 5-fold cross-validation and independent tests. The results show that our transfer-learning-based method provides a robust performance, which is at least comparable to traditional feature-selection methods for prediction of MMP-2, -3, -7, -8, -9 and -12 substrate-cleavage sites on independent tests. The results also demonstrate that our proposed computational framework provides a useful alternative for the characterization of sequence-level determinants of MMP-substrate specificity.
基质金属蛋白酶(MMPs)是一类重要的蛋白酶,在关键的细胞和疾病过程中发挥着至关重要的作用。因此,MMPs 成为药物设计、开发和输送的重要靶点。先进的蛋白质组学技术已经确定了特定类型的靶标底物;然而,MMP 底物的完整组成仍未被描述。事实上,与 MMP 相关的底物切割位点的计算预测是一个具有挑战性的问题。当考虑到 MMP-2、-3、-7 和 -8 等具有少数经实验验证的切割位点的 MMP 时,尤其如此。为了填补这一空白,我们提出了一种新的知识转移计算框架,该框架有效地利用了一些 MMP 类型的隐藏共享知识,以增强对其他不同靶标底物切割位点的预测。我们的计算框架使用支持向量机结合转移机器学习和特征选择。为了证明模型的价值,我们提取了各种底物序列衍生的特征,并使用 5 倍交叉验证和独立测试比较了我们方法的性能。结果表明,我们的基于转移学习的方法提供了稳健的性能,至少与传统的特征选择方法相当,可用于预测 MMP-2、-3、-7、-8、-9 和 -12 的独立测试中的底物切割位点。结果还表明,我们提出的计算框架为 MMP 底物特异性的序列水平决定因素的表征提供了一种有用的替代方法。
Genomics Proteomics Bioinformatics. 2020-5-12
Molecules. 2022-2-14
Int J Mol Sci. 2021-3-17
Nucleic Acids Res. 2016-1-4
Matrix Biol. 2015-1-17
Bioinformatics. 2015-3-15
Genes Dev. 2014-11-1
Proc Natl Acad Sci U S A. 2014-10-7