文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

iProt-Sub:一个全面的软件包,用于准确地映射和预测蛋白酶特异性底物和切割位点。

iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.

机构信息

Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia.

Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.

出版信息

Brief Bioinform. 2019 Mar 25;20(2):638-658. doi: 10.1093/bib/bby028.


DOI:10.1093/bib/bby028
PMID:29897410
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6556904/
Abstract

Regulation of proteolysis plays a critical role in a myriad of important cellular processes. The key to better understanding the mechanisms that control this process is to identify the specific substrates that each protease targets. To address this, we have developed iProt-Sub, a powerful bioinformatics tool for the accurate prediction of protease-specific substrates and their cleavage sites. Importantly, iProt-Sub represents a significantly advanced version of its successful predecessor, PROSPER. It provides optimized cleavage site prediction models with better prediction performance and coverage for more species-specific proteases (4 major protease families and 38 different proteases). iProt-Sub integrates heterogeneous sequence and structural features and uses a two-step feature selection procedure to further remove redundant and irrelevant features in an effort to improve the cleavage site prediction accuracy. Features used by iProt-Sub are encoded by 11 different sequence encoding schemes, including local amino acid sequence profile, secondary structure, solvent accessibility and native disorder, which will allow a more accurate representation of the protease specificity of approximately 38 proteases and training of the prediction models. Benchmarking experiments using cross-validation and independent tests showed that iProt-Sub is able to achieve a better performance than several existing generic tools. We anticipate that iProt-Sub will be a powerful tool for proteome-wide prediction of protease-specific substrates and their cleavage sites, and will facilitate hypothesis-driven functional interrogation of protease-specific substrate cleavage and proteolytic events.

摘要

蛋白质水解的调控在许多重要的细胞过程中起着关键作用。更好地理解控制这一过程的机制的关键是确定每种蛋白酶的特定底物。为了解决这个问题,我们开发了 iProt-Sub,这是一种强大的生物信息学工具,用于准确预测蛋白酶特异性底物及其切割位点。重要的是,iProt-Sub 是其前身 PROSPER 的一个显著改进版本。它为更多物种特异性的蛋白酶(4 种主要的蛋白酶家族和 38 种不同的蛋白酶)提供了优化的切割位点预测模型,具有更好的预测性能和覆盖范围。iProt-Sub 集成了异构序列和结构特征,并使用两步特征选择过程来进一步去除冗余和不相关的特征,以提高切割位点预测的准确性。iProt-Sub 使用的特征由 11 种不同的序列编码方案编码,包括局部氨基酸序列轮廓、二级结构、溶剂可及性和天然无序性,这将允许更准确地表示大约 38 种蛋白酶的蛋白酶特异性,并训练预测模型。使用交叉验证和独立测试的基准实验表明,iProt-Sub 能够实现比几个现有通用工具更好的性能。我们预计 iProt-Sub 将成为一种强大的工具,用于全蛋白质组范围内预测蛋白酶特异性底物及其切割位点,并促进基于假设的对蛋白酶特异性底物切割和蛋白水解事件的功能研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/7866e2c50b16/bby028f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/363c0b5a45cd/bby028f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/490539e44bc4/bby028f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/1e67b59afc2d/bby028f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/4091936a0e68/bby028f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/3677d077c0aa/bby028f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/d25cac945dc5/bby028f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/b092bd96b81d/bby028f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/e15dbc4def4e/bby028f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/930836e675b4/bby028f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/7866e2c50b16/bby028f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/363c0b5a45cd/bby028f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/490539e44bc4/bby028f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/1e67b59afc2d/bby028f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/4091936a0e68/bby028f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/3677d077c0aa/bby028f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/d25cac945dc5/bby028f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/b092bd96b81d/bby028f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/e15dbc4def4e/bby028f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/930836e675b4/bby028f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/6556904/7866e2c50b16/bby028f10.jpg

相似文献

[1]
iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.

Brief Bioinform. 2019-3-25

[2]
PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

PLoS One. 2012-11-29

[3]
Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.

Brief Bioinform. 2019-11-27

[4]
Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.

Genomics Proteomics Bioinformatics. 2020-5-12

[5]
PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.

Bioinformatics. 2018-2-15

[6]
ProsperousPlus: a one-stop and comprehensive platform for accurate protease-specific substrate cleavage prediction and machine-learning model construction.

Brief Bioinform. 2023-9-22

[7]
Predicting Proteolysis in Complex Proteomes Using Deep Learning.

Int J Mol Sci. 2021-3-17

[8]
Bioinformatic approaches for predicting substrates of proteases.

J Bioinform Comput Biol. 2011-2

[9]
Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets.

Bioinformatics. 2013-10-21

[10]
Prediction of HIV-1 protease cleavage site using a combination of sequence, structural, and physicochemical features.

BMC Bioinformatics. 2016-12-23

引用本文的文献

[1]
Progress and trends on machine learning in proteomics during 1997-2024: a bibliometric analysis.

Front Med (Lausanne). 2025-8-15

[2]
A deeper evaluation of cytokeratin fragment 21-1 as a lung cancer tumor marker and comparison of different assays.

Biosens Bioelectron X. 2025-5

[3]
Downregulation of PIK3IP1/TrIP on T cells is controlled by TCR signal strength, PKC, and metalloprotease-mediated cleavage.

J Biol Chem. 2024-12

[4]
Downregulation of PIK3IP1/TrIP on T cells is controlled by TCR signal strength, PKC and metalloprotease-mediated cleavage.

bioRxiv. 2024-10-21

[5]
iACVP-MR: Accurate Identification of Anti-coronavirus Peptide based on Multiple Features Information and Recurrent Neural Network.

Curr Med Chem. 2025

[6]
ADCdb: the database of antibody-drug conjugates.

Nucleic Acids Res. 2024-1-5

[7]
Prediction and design of protease enzyme specificity using a structure-aware graph convolutional network.

Proc Natl Acad Sci U S A. 2023-9-26

[8]
Proteomic data and structure analysis combined reveal interplay of structural rigidity and flexibility on selectivity of cysteine cathepsins.

Commun Biol. 2023-4-24

[9]
N-Terminomic Changes in Neurons During Excitotoxicity Reveal Proteolytic Events Associated With Synaptic Dysfunctions and Potential Targets for Neuroprotection.

Mol Cell Proteomics. 2023-5

[10]
Prediction and Design of Protease Enzyme Specificity Using a Structure-Aware Graph Convolutional Network.

bioRxiv. 2023-2-16

本文引用的文献

[1]
iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences.

Bioinformatics. 2018-7-15

[2]
iDNA6mA-PseKNC: Identifying DNA N-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC.

Genomics. 2018-1-31

[3]
A Novel Modeling in Mathematical Biology for Classification of Signal Peptides.

Sci Rep. 2018-1-18

[4]
BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches.

Brief Bioinform. 2019-7-19

[5]
B-factor profile prediction for RNA flexibility using support vector machines.

J Comput Chem. 2017-11-21

[6]
Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC.

J Theor Biol. 2018-1-21

[7]
PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.

Bioinformatics. 2018-2-15

[8]
pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites.

Bioinformatics. 2017-11-15

[9]
iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC.

Bioinformatics. 2018-1-1

[10]
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection.

Sci Rep. 2017-7-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索