Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092, Zürich, Switzerland.
Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic.
Microb Ecol. 2018 Jan;75(1):228-238. doi: 10.1007/s00248-017-1037-4. Epub 2017 Jul 18.
Mucus production is initiated before birth and provides mucin glycans to the infant gut microbiota. Bifidobacteria are the major bacterial group in the feces of vaginally delivered and breast milk-fed infants. Among the bifidobacteria, only Bifidobacterium bifidum is able to degrade mucin and to release monosaccharides which can be used by other gut microbes colonizing the infant gut. Eubacterium hallii is an early occurring commensal that produces butyrate and propionate from fermentation metabolites but that cannot degrade complex oligo- and polysaccharides. We aimed to demonstrate that mucin cross-feeding initiated by B. bifidum enables growth and metabolite formation of E. hallii leading to short-chain fatty acid (SCFA) formation. Growth and metabolite formation of co-cultures of B. bifidum, of Bifidobacterium breve or Bifidobacterium infantis, which use mucin-derived hexoses and fucose, and of E. hallii were determined. Growth of E. hallii in the presence of lactose and mucin monosaccharides was tested. In co-culture fermentations, the presence of B. bifidum enabled growth of the other strains. B. bifidum/B. infantis co-cultures yielded acetate, formate, and lactate while co-cultures of B. bifidum and E. hallii formed acetate, formate, and butyrate. In three-strain co-cultures, B. bifidum, E. hallii, and B. breve or B. infantis produced up to 16 mM acetate, 5 mM formate, and 4 mM butyrate. The formation of propionate (approximately 1 mM) indicated cross-feeding on fucose. Lactose, galactose, and GlcNAc were identified as substrates of E. hallii. This study shows that trophic interactions of bifidobacteria and E. hallii lead to the formation of acetate, butyrate, propionate, and formate, potentially contributing to intestinal SCFA formation with potential benefits for the host and for microbial colonization of the infant gut. The ratios of SCFA formed differed depending on the microbial species involved in mucin cross-feeding.
粘液的产生始于出生前,并为婴儿肠道微生物群提供粘糖。双歧杆菌是阴道分娩和母乳喂养婴儿粪便中的主要细菌群。在双歧杆菌中,只有双歧杆菌能够降解粘蛋白并释放可被定植于婴儿肠道的其他肠道微生物利用的单糖。真杆菌是一种早期共生菌,能够从发酵代谢物中产生丁酸和丙酸,但不能降解复杂的寡糖和多糖。我们旨在证明双歧杆菌的粘蛋白交叉喂养能够促进真杆菌的生长和代谢产物的形成,从而导致短链脂肪酸(SCFA)的形成。确定了双歧杆菌、短双歧杆菌或婴儿双歧杆菌共培养物、利用粘蛋白衍生的己糖和岩藻糖的真杆菌的生长和代谢产物的形成,以及在乳糖和粘蛋白单糖存在下真杆菌的生长情况。在共培养发酵中,双歧杆菌的存在使其他菌株能够生长。双歧杆菌/婴儿双歧杆菌共培养物产生乙酸盐、甲酸盐和乳酸盐,而双歧杆菌和真杆菌的共培养物形成乙酸盐、甲酸盐和丁酸盐。在三株共培养物中,双歧杆菌、真杆菌和短双歧杆菌或婴儿双歧杆菌产生高达 16 mM 的乙酸盐、5 mM 的甲酸盐和 4 mM 的丁酸盐。丙酸盐(约 1 mM)的形成表明存在对岩藻糖的交叉喂养。乳糖、半乳糖和 GlcNAc 被鉴定为真杆菌的底物。本研究表明,双歧杆菌和真杆菌之间的营养相互作用导致乙酸盐、丁酸盐、丙酸盐和甲酸盐的形成,这可能有助于肠道 SCFA 的形成,从而为宿主和婴儿肠道微生物的定植带来潜在益处。形成的 SCFA 的比例取决于参与粘蛋白交叉喂养的微生物种类。