Departamento de Química Física y Centro Singular de Investigaciones biomédicas (CINBIO), Universidade de Vigo , 36310 Vigo, Spain.
Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Departamento de Química Física, Universidad de Santiago , 15782 Santiago, Spain.
ACS Appl Mater Interfaces. 2017 Aug 9;9(31):26372-26382. doi: 10.1021/acsami.7b08297. Epub 2017 Jul 31.
Novel plasmonic thin films based on electrostatic layer-by-layer (LbL) deposition of citrate-stabilized Au nanoparticles (NPs) and ammonium pillar[5]arene (AP[5]A) have been developed. The supramolecular-induced LbL assembly of the plasmonic nanoparticles yields the formation of controlled hot spots with uniform interparticle distances. At the same time, this strategy allows modulating the density and dimensions of the Au aggregates, and therefore the optical response, on the thin film with the number of AuNP-AP[5]A deposition cycles. Characterization of the AuNP-AP[5]A hybrid platforms as a function of the deposition cycles was performed by means of visible-NIR absorption spectroscopy, and scanning electron and atomic force microscopies, showing larger aggregates with the number of cycles. Additionally, the surface enhanced Raman scattering efficiency of the resulting AuNP-AP[5]A thin films has been investigated for three different laser excitations (633, 785, and 830 nm) and using pyrene as Raman probe. The best performance was shown by the AuNP-AP[5]A film obtained with two deposition cycles ((AuNP-AP[5]A)) when excited with a 785 laser line. The optical response and SERS efficiency of the thin films were also simulated using the M solver and employing computer aided design models built based on SEM images of the different films. The use of host molecules as building blocks to fabricate (AuNP-AP[5]A)) films has enabled the ultradetection, in liquid and gas phase, of low molecular weight polyaromatic hydrocarbons, PAHs, with no affinity for gold but toward the hydrophobic AP[5]A cavity. Besides, these plasmonic platforms allowed achieving quantitative detection within certain concentration regimes. Finally, the multiplex sensing capabilities of the AuNP-AP[5]A) were evaluated for their ability to detect in liquid and gas phase three different PAHs.
已开发出基于柠檬酸稳定的 Au 纳米粒子 (NPs) 和铵柱[5]芳烃 (AP[5]A) 的静电层层 (LbL) 沉积的新型等离子体薄膜。超分子诱导的等离子体纳米粒子的 LbL 组装导致形成具有均匀颗粒间距离的受控热点。同时,该策略允许在薄膜上调节 Au 聚集体的密度和尺寸,因此可以调节光学响应,其数量与 AuNP-AP[5]A 沉积循环数有关。通过可见-近红外吸收光谱、扫描电子显微镜和原子力显微镜对 AuNP-AP[5]A 混合平台进行了表征,结果表明随着循环次数的增加,聚集体的尺寸增大。此外,还研究了所得 AuNP-AP[5]A 薄膜在三种不同激光激发 (633、785 和 830nm) 下的表面增强拉曼散射效率,并使用芘作为拉曼探针。当用 785nm 激光线激发时,具有两个沉积循环的 AuNP-AP[5]A 薄膜显示出最佳性能。还使用 M 求解器和基于不同薄膜的 SEM 图像构建的计算机辅助设计模型对薄膜的光学响应和 SERS 效率进行了模拟。使用主体分子作为构建块来制造 (AuNP-AP[5]A) 薄膜,使超灵敏检测成为可能,可在液相和气相中检测低分子量多环芳烃 (PAHs),这些 PAHs 对金没有亲和力,但对疏水性 AP[5]A 空腔有亲和力。此外,这些等离子体平台允许在某些浓度范围内实现定量检测。最后,评估了 AuNP-AP[5]A) 的多重传感能力,以评估其在液相和气相中检测三种不同 PAHs 的能力。