Suppr超能文献

用于飞摩尔水平生物分子快速定量的印刷钼酸锶晶体管生物传感器的循环操作

Cyclewise Operation of Printed MoS Transistor Biosensors for Rapid Biomolecule Quantification at Femtomolar Levels.

作者信息

Ryu Byunghoon, Nam Hongsuk, Oh Bo-Ram, Song Yujing, Chen Pengyu, Park Younggeun, Wan Wenjie, Kurabayashi Katsuo, Liang Xiaogan

机构信息

Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States.

University of Michigan-Shanghai Jiao Tong University Joint Institute and Department of Physics and Astronomy, Shanghai Jiao Tong University , Shanghai 200240, China.

出版信息

ACS Sens. 2017 Feb 24;2(2):274-281. doi: 10.1021/acssensors.6b00795. Epub 2017 Feb 9.

Abstract

Field-effect transistors made from MoS and other emerging layered semiconductors have been demonstrated to be able to serve as ultrasensitive biosensors. However, such nanoelectronic sensors still suffer seriously from a series of challenges associated with the poor compatibility between electronic structures and liquid analytes. These challenges hinder the practical biosensing applications that demand rapid, low-noise, highly specific biomolecule quantification at femtomolar levels. To address such challenges, we study a cyclewise process for operating MoS transistor biosensors, in which a series of reagent fluids are delivered to the sensor in a time-sequenced manner and periodically set the sensor into four assay-cycle stages, including incubation, flushing, drying, and electrical measurement. Running multiple cycles of such an assay can acquire a time-dependent sensor response signal quantifying the reaction kinetics of analyte-receptor binding. This cyclewise detection approach can avoid the liquid-solution-induced electrochemical damage, screening, and nonspecific adsorption to the sensor and therefore improves the transistor sensor's durability, sensitivity, specificity, and signal-to-noise ratio. These advantages in combination with the inherent high sensitivity of MoS biosensors allow for rapid biomolecule quantification at femtomolar levels. We have demonstrated the cyclewise quantification of Interleukin-1β in pure and complex solutions (e.g., serum and saliva) with a detection limit of ∼1 fM and a total detection time ∼23 min. This work leverages the superior properties of layered semiconductors for biosensing applications and advances the techniques toward realizing fast real-time immunoassay for low-abundance biomolecule detection.

摘要

由二硫化钼(MoS)和其他新兴层状半导体制成的场效应晶体管已被证明能够用作超灵敏生物传感器。然而,这种纳米电子传感器仍然严重面临一系列与电子结构和液体分析物之间兼容性差相关的挑战。这些挑战阻碍了实际的生物传感应用,这些应用需要在飞摩尔水平上进行快速、低噪声、高特异性的生物分子定量。为了应对这些挑战,我们研究了一种用于操作MoS晶体管生物传感器的循环过程,其中一系列试剂液以时间序列的方式输送到传感器,并将传感器周期性地设置为四个检测循环阶段,包括孵育、冲洗、干燥和电学测量。运行多个这样的检测循环可以获取一个随时间变化的传感器响应信号,该信号可量化分析物 - 受体结合的反应动力学。这种循环检测方法可以避免液体溶液对传感器造成的电化学损伤、筛选和非特异性吸附,因此提高了晶体管传感器的耐久性、灵敏度、特异性和信噪比。这些优点与MoS生物传感器固有的高灵敏度相结合,使得能够在飞摩尔水平上快速进行生物分子定量。我们已经证明了在纯溶液和复杂溶液(如血清和唾液)中对白细胞介素 - 1β进行循环定量,检测限约为1 fM,总检测时间约为23分钟。这项工作利用了层状半导体在生物传感应用中的优异性能,并推动了实现低丰度生物分子快速实时免疫分析的技术发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验