Webster Christopher M, Pino Elizabeth C, Carr Christopher E, Wu Lianfeng, Zhou Ben, Cedillo Lucydalila, Kacergis Michael C, Curran Sean P, Soukas Alexander A
Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
Cell Rep. 2017 Jul 18;20(3):627-640. doi: 10.1016/j.celrep.2017.06.068.
Organisms must execute metabolic defenses to survive nutrient deprivation. We performed a genome-wide RNAi screen in Caenorhabditis elegans to identify fat regulatory genes indispensable for starvation resistance. Here, we show that opposing proteostasis pathways are principal determinants of starvation survival. Reduced function of cytoplasmic aminoacyl tRNA synthetases (ARS genes) increases fat mass and extends starvation survival, whereas reduced proteasomal function reduces fat and starvation survival. These opposing pathways converge on AMP-activated protein kinase (AMPK) as the critical effector of starvation defenses. Extended starvation survival in ARS deficiency is dependent upon increased proteasome-mediated activation of AMPK. When the proteasome is inhibited, neither starvation nor ARS deficiency can fully activate AMPK, leading to greatly diminished starvation survival. Thus, activity of the proteasome and AMPK are mechanistically linked and highly correlated with starvation resistance. Conversely, aberrant activation of the proteostasis-AMPK axis during nutritional excess may have implications for obesity and cardiometabolic diseases.
生物体必须执行代谢防御机制以在营养剥夺的情况下生存。我们在秀丽隐杆线虫中进行了全基因组RNA干扰筛选,以鉴定对饥饿抗性不可或缺的脂肪调节基因。在此,我们表明,相反的蛋白质稳态途径是饥饿生存的主要决定因素。细胞质氨酰tRNA合成酶(ARS基因)功能的降低会增加脂肪量并延长饥饿生存期,而蛋白酶体功能的降低则会减少脂肪量并缩短饥饿生存期。这些相反的途径汇聚在AMP激活的蛋白激酶(AMPK)上,作为饥饿防御的关键效应器。ARS缺乏时饥饿生存期的延长依赖于蛋白酶体介导的AMPK激活增加。当蛋白酶体被抑制时,饥饿和ARS缺乏都不能完全激活AMPK,导致饥饿生存期大大缩短。因此,蛋白酶体和AMPK的活性在机制上相互关联,并且与饥饿抗性高度相关。相反,在营养过剩期间蛋白质稳态-AMPK轴的异常激活可能与肥胖症和心脏代谢疾病有关。