Suppr超能文献

心血管疾病中的Wnt信号传导:机遇与挑战

Wnt signaling in cardiovascular disease: opportunities and challenges.

作者信息

Gay Austin, Towler Dwight A

机构信息

Department of Internal Medicine-Endocrine Division, UT Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Curr Opin Lipidol. 2017 Oct;28(5):387-396. doi: 10.1097/MOL.0000000000000445.

Abstract

PURPOSE OF REVIEW

Cardiometabolic diseases increasingly afflict our aging, dysmetabolic population. Complex signals regulating low-density lipoprotein receptor-related protein (LRP) and frizzled protein family members - the plasma membrane receptors for the cadre of Wnt polypeptide morphogens - contribute to the control of cardiovascular homeostasis.

RECENT FINDINGS

Both canonical (β-catenin-dependent) and noncanonical (β-catenin-independent) Wnt signaling programs control vascular smooth muscle (VSM) cell phenotypic modulation in cardiometabolic disease. LRP6 limits VSM proliferation, reduces arteriosclerotic transcriptional reprogramming, and preserves insulin sensitivity while LRP5 restrains foam cell formation. Adipose, skeletal muscle, macrophages, and VSM have emerged as important sources of circulating Wnt ligands that are dynamically regulated during the prediabetes-diabetes transition with cardiometabolic consequences. Platelets release Dkk1, a LRP5/LRP6 inhibitor that induces endothelial inflammation and the prosclerotic endothelial-mesenchymal transition. By contrast, inhibitory secreted frizzled-related proteins shape the Wnt signaling milieu to limit myocardial inflammation with ischemia-reperfusion injury. VSM sclerostin, an inhibitor of canonical Wnt signaling in bone, restrains remodeling that predisposes to aneurysm formation, and is downregulated in aneurysmal vessels by epigenetic methylation.

SUMMARY

Components of the Wnt signaling cascade represent novel targets for pharmacological intervention in cardiometabolic disease. Conversely, strategies targeting the Wnt signaling cascade for other therapeutic purposes will have cardiovascular consequences that must be delineated to establish clinically useful pharmacokinetic-pharmacodynamic relationships.

摘要

综述目的

心脏代谢疾病日益困扰着我们老龄化、代谢紊乱的人群。调节低密度脂蛋白受体相关蛋白(LRP)和卷曲蛋白家族成员(Wnt多肽形态发生素的质膜受体)的复杂信号有助于控制心血管稳态。

最新发现

经典(β-连环蛋白依赖性)和非经典(β-连环蛋白非依赖性)Wnt信号通路均控制心脏代谢疾病中血管平滑肌(VSM)细胞的表型调节。LRP6限制VSM增殖,减少动脉粥样硬化转录重编程,并维持胰岛素敏感性,而LRP5抑制泡沫细胞形成。脂肪组织、骨骼肌、巨噬细胞和VSM已成为循环Wnt配体的重要来源,这些配体在糖尿病前期向糖尿病转变过程中受到动态调节,并产生心脏代谢后果。血小板释放Dkk1,一种LRP5/LRP6抑制剂,可诱导内皮炎症和促动脉粥样硬化的内皮-间充质转化。相比之下,抑制性分泌卷曲相关蛋白塑造Wnt信号环境,以限制心肌缺血再灌注损伤时的炎症。VSM硬化蛋白是骨骼中经典Wnt信号的抑制剂,可抑制易导致动脉瘤形成的重塑,并且在动脉瘤血管中通过表观遗传甲基化而下调。

总结

Wnt信号级联的组成部分代表了心脏代谢疾病药物干预的新靶点。相反,针对其他治疗目的的Wnt信号级联策略将产生心血管后果,必须加以描述以建立临床上有用的药代动力学-药效学关系。

相似文献

1
Wnt signaling in cardiovascular disease: opportunities and challenges.
Curr Opin Lipidol. 2017 Oct;28(5):387-396. doi: 10.1097/MOL.0000000000000445.
2
Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR-/- mice by restraining noncanonical Wnt signals.
Circ Res. 2015 Jul 3;117(2):142-56. doi: 10.1161/CIRCRESAHA.117.306712. Epub 2015 Jun 1.
4
Opposing Roles of Wnt Inhibitors IGFBP-4 and Dkk1 in Cardiac Ischemia by Differential Targeting of LRP5/6 and β-catenin.
Circulation. 2016 Dec 13;134(24):1991-2007. doi: 10.1161/CIRCULATIONAHA.116.024441. Epub 2016 Nov 1.
8
LRP6 dimerization through its LDLR domain is required for robust canonical Wnt pathway activation.
Cell Signal. 2014 May;26(5):1068-74. doi: 10.1016/j.cellsig.2013.12.020. Epub 2014 Jan 8.
9
LRP6 mediates Wnt/β-catenin signaling and regulates adipogenic differentiation in human mesenchymal stem cells.
Int J Biochem Cell Biol. 2012 Nov;44(11):1970-82. doi: 10.1016/j.biocel.2012.07.025. Epub 2012 Aug 2.
10
WNT signaling pathway and stem cell signaling network.
Clin Cancer Res. 2007 Jul 15;13(14):4042-5. doi: 10.1158/1078-0432.CCR-06-2316.

引用本文的文献

1
Piezo1 in heart failure: A new perspective from cytomechanical sensing to diverse cellular pathways.
Mol Biol Rep. 2025 Sep 3;52(1):862. doi: 10.1007/s11033-025-10969-3.
3
Association of Serum Secreted Frizzled-Related Protein 5 Levels With Coronary Artery Disease.
Cureus. 2025 Mar 11;17(3):e80408. doi: 10.7759/cureus.80408. eCollection 2025 Mar.
4
The Role of Wnt3a/β-Catenin/TCF7L2 Pathway in Diabetes and Cardiorenal Complications.
Cardiorenal Med. 2025;15(1):72-82. doi: 10.1159/000543145. Epub 2024 Dec 20.
5
Molecular insights into Wnt3a and Wnt5a gene expression in venous insufficiency.
Mol Biol Rep. 2024 Dec 16;52(1):53. doi: 10.1007/s11033-024-10153-z.
7
Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications.
Front Cardiovasc Med. 2024 May 13;11:1400780. doi: 10.3389/fcvm.2024.1400780. eCollection 2024.
8
Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease.
Front Endocrinol (Lausanne). 2024 Mar 21;14:1286979. doi: 10.3389/fendo.2023.1286979. eCollection 2023.
9
Roles of pyroptosis and immune infiltration in aortic dissection.
Front Mol Biosci. 2024 Mar 19;11:1277818. doi: 10.3389/fmolb.2024.1277818. eCollection 2024.
10
Wnt Signaling in Atherosclerosis: Mechanisms to Therapeutic Implications.
Biomedicines. 2024 Jan 25;12(2):276. doi: 10.3390/biomedicines12020276.

本文引用的文献

1
Greater Gains in Spine and Hip Strength for Romosozumab Compared With Teriparatide in Postmenopausal Women With Low Bone Mass.
J Bone Miner Res. 2017 Sep;32(9):1956-1962. doi: 10.1002/jbmr.3176. Epub 2017 Jun 26.
2
ROR-Family Receptor Tyrosine Kinases.
Curr Top Dev Biol. 2017;123:105-142. doi: 10.1016/bs.ctdb.2016.09.003. Epub 2016 Oct 31.
3
"Osteotropic" Wnt/LRP Signals: High-Wire Artists in a Balancing Act Regulating Aortic Structure and Function.
Arterioscler Thromb Vasc Biol. 2017 Mar;37(3):392-395. doi: 10.1161/ATVBAHA.116.308915.
4
Commonalities Between Vasculature and Bone: An Osseocentric View of Arteriosclerosis.
Circulation. 2017 Jan 24;135(4):320-322. doi: 10.1161/CIRCULATIONAHA.116.022562.
5
Arterial Calcification in Diabetes Mellitus: Preclinical Models and Translational Implications.
Arterioscler Thromb Vasc Biol. 2017 Feb;37(2):205-217. doi: 10.1161/ATVBAHA.116.306258. Epub 2016 Dec 22.
6
Wnt Signaling Pathway Inhibitor Sclerostin Inhibits Angiotensin II-Induced Aortic Aneurysm and Atherosclerosis.
Arterioscler Thromb Vasc Biol. 2017 Mar;37(3):553-566. doi: 10.1161/ATVBAHA.116.308723. Epub 2016 Dec 22.
7
WNT-5A regulates TGF-β-related activities in liver fibrosis.
Am J Physiol Gastrointest Liver Physiol. 2017 Mar 1;312(3):G219-G227. doi: 10.1152/ajpgi.00160.2016. Epub 2017 Jan 5.
8
Temporary, Systemic Inhibition of the WNT/β-Catenin Pathway promotes Regenerative Cardiac Repair following Myocardial Infarct.
Cell Stem Cells Regen Med. 2016 Nov;2(2). doi: 10.16966/2472-6990.111. Epub 2016 May 30.
9
Differentiated Smooth Muscle Cells Generate a Subpopulation of Resident Vascular Progenitor Cells in the Adventitia Regulated by Klf4.
Circ Res. 2017 Jan 20;120(2):296-311. doi: 10.1161/CIRCRESAHA.116.309322. Epub 2016 Nov 9.
10
Romosozumab Treatment in Postmenopausal Women with Osteoporosis.
N Engl J Med. 2016 Oct 20;375(16):1532-1543. doi: 10.1056/NEJMoa1607948. Epub 2016 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验