Suppr超能文献

溶酶体钾通道TMEM175采用了一种新型的四聚体结构。

The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture.

作者信息

Lee Changkeun, Guo Jiangtao, Zeng Weizhong, Kim Sunghoon, She Ji, Cang Chunlei, Ren Dejian, Jiang Youxing

机构信息

Department of Physiology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA.

Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA.

出版信息

Nature. 2017 Jul 27;547(7664):472-475. doi: 10.1038/nature23269. Epub 2017 Jul 19.

Abstract

TMEM175 is a lysosomal K channel that is important for maintaining the membrane potential and pH stability in lysosomes. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K channels and lacks the TVGYG selectivity filter motif found in these channels. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completely different fold from that of canonical K channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K channel family.

摘要

跨膜蛋白175(TMEM175)是一种溶酶体钾通道,对维持溶酶体的膜电位和pH稳定性至关重要。它包含两个六跨膜螺旋(6-TM)结构域的同源拷贝,该结构域与典型的四聚体钾通道没有序列同源性,并且缺乏这些通道中发现的TVGYG选择性过滤器基序。原核生物的TMEM175通道存在于细菌和古细菌的一个亚群中,仅包含一个单一的6-TM结构域,并作为四聚体发挥作用。在这里,我们展示了来自微小管孢藻的原核生物TMEM175通道(CmTMEM175)的晶体结构,其结构代表了与典型钾通道完全不同的折叠方式。CmTMEM175的所有六个跨膜螺旋在每个亚基内紧密堆积,没有发生结构域交换。高度保守的TM1螺旋作为孔衬里内螺旋,在通道四聚体中形成沙漏形的离子渗透途径。TM1螺旋羧基末端一半上的三层疏水残基沿着离子传导途径形成一个瓶颈,并作为通道的选择性过滤器。诱变分析表明,过滤器中高度保守的异亮氨酸残基的第一层主要负责通道的选择性。因此,CmTMEM175的结构代表了一种四聚体阳离子通道的新结构,其离子选择性机制似乎与经典钾通道家族不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641f/5901963/f1a929f1f78a/nihms882838f1.jpg

相似文献

1
The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture.
Nature. 2017 Jul 27;547(7664):472-475. doi: 10.1038/nature23269. Epub 2017 Jul 19.
2
Gating and selectivity mechanisms for the lysosomal K channel TMEM175.
Elife. 2020 Mar 31;9:e53430. doi: 10.7554/eLife.53430.
3
Structural basis for ion selectivity in TMEM175 K channels.
Elife. 2020 Apr 8;9:e53683. doi: 10.7554/eLife.53683.
4
Transmembrane Protein 175, a Lysosomal Ion Channel Related to Parkinson's Disease.
Biomolecules. 2023 May 9;13(5):802. doi: 10.3390/biom13050802.
6
TMEM175 Is an Organelle K(+) Channel Regulating Lysosomal Function.
Cell. 2015 Aug 27;162(5):1101-12. doi: 10.1016/j.cell.2015.08.002.
7
pH regulates potassium conductance and drives a constitutive proton current in human TMEM175.
Sci Adv. 2022 Mar 25;8(12):eabm1568. doi: 10.1126/sciadv.abm1568.
8
9
Molecular mechanism of a potassium channel gating through activation gate-selectivity filter coupling.
Nat Commun. 2019 Nov 26;10(1):5366. doi: 10.1038/s41467-019-13227-w.
10
Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel.
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1568-72. doi: 10.1073/pnas.94.4.1568.

引用本文的文献

1
Lysosomal Ion Channels and Transporters: Recent Findings, Therapeutic Potential, and Technical Approaches.
Bioelectricity. 2025 Mar 18;7(1):29-57. doi: 10.1089/bioe.2025.0010. eCollection 2025 Mar.
2
CYP51A1 drives resistance to pH-dependent cell death in pancreatic cancer.
Nat Commun. 2025 Mar 7;16(1):2278. doi: 10.1038/s41467-025-57583-2.
3
Electric Forces and ATP Synthesis.
Rev Physiol Biochem Pharmacol. 2025;187:419-452. doi: 10.1007/978-3-031-68827-0_20.
4
Suppression of epileptic seizures by transcranial activation of K-selective channelrhodopsin.
Nat Commun. 2025 Jan 10;16(1):559. doi: 10.1038/s41467-025-55818-w.
5
3D-aligned tetrameric ion channels with universal residue labels for comparative structural analysis.
Biophys J. 2025 Jan 21;124(2):458-470. doi: 10.1016/j.bpj.2024.12.019. Epub 2024 Dec 17.
9
The ion channels of endomembranes.
Physiol Rev. 2024 Jul 1;104(3):1335-1385. doi: 10.1152/physrev.00025.2023. Epub 2024 Mar 7.
10
Transcendent Aspects of Proton Channels.
Annu Rev Physiol. 2024 Feb 12;86:357-377. doi: 10.1146/annurev-physiol-042222-023242. Epub 2023 Nov 6.

本文引用的文献

1
TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2389-2394. doi: 10.1073/pnas.1616332114. Epub 2017 Feb 13.
2
Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7399-E7408. doi: 10.1073/pnas.1614688113. Epub 2016 Nov 7.
3
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
Regulation of lysosomal ion homeostasis by channels and transporters.
Sci China Life Sci. 2016 Aug;59(8):777-91. doi: 10.1007/s11427-016-5090-x. Epub 2016 Jul 19.
5
TMEM175 Is an Organelle K(+) Channel Regulating Lysosomal Function.
Cell. 2015 Aug 27;162(5):1101-12. doi: 10.1016/j.cell.2015.08.002.
6
Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10851-6. doi: 10.1073/pnas.1513718112. Epub 2015 Aug 17.
7
Lysosomal physiology.
Annu Rev Physiol. 2015;77:57-80. doi: 10.1146/annurev-physiol-021014-071649.
8
Structure and insights into the function of a Ca(2+)-activated Cl(-) channel.
Nature. 2014 Dec 11;516(7530):213-8. doi: 10.1038/nature13913. Epub 2014 Oct 22.
9
Structure and selectivity in bestrophin ion channels.
Science. 2014 Oct 17;346(6207):355-9. doi: 10.1126/science.1259723. Epub 2014 Sep 25.
10
Hydrophobic gating in ion channels.
J Mol Biol. 2015 Jan 16;427(1):121-30. doi: 10.1016/j.jmb.2014.07.030. Epub 2014 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验