Suppr超能文献

利用高密度基因型数据通过并行计算对中国西门塔尔肉牛屠宰性状进行基因组预测

Genomic prediction with parallel computing for slaughter traits in Chinese Simmental beef cattle using high-density genotypes.

作者信息

Guo Peng, Zhu Bo, Xu Lingyang, Niu Hong, Wang Zezhao, Guan Long, Liang Yonghu, Ni Hemin, Guo Yong, Chen Yan, Zhang Lupei, Gao Xue, Gao Huijiang, Li Junya

机构信息

Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.

College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin, China.

出版信息

PLoS One. 2017 Jul 19;12(7):e0179885. doi: 10.1371/journal.pone.0179885. eCollection 2017.

Abstract

Genomic selection has been widely used for complex quantitative trait in farm animals. Estimations of breeding values for slaughter traits are most important to beef cattle industry, and it is worthwhile to investigate prediction accuracies of genomic selection for these traits. In this study, we assessed genomic predictive abilities for average daily gain weight (ADG), live weight (LW), carcass weight (CW), dressing percentage (DP), lean meat percentage (LMP) and retail meat weight (RMW) using Illumina Bovine 770K SNP Beadchip in Chinese Simmental cattle. To evaluate the abilities of prediction, marker effects were estimated using genomic BLUP (GBLUP) and three parallel Bayesian models, including multiple chains parallel BayesA, BayesB and BayesCπ (PBayesA, PBayesB and PBayesCπ). Training set and validation set were divided by random allocation, and the predictive accuracies were evaluated using 5-fold cross validations. We found the accuracies of genomic predictions ranged from 0.195±0.084 (GBLUP for LMP) to 0.424±0.147 (PBayesB for CW). The average accuracies across traits were 0.327±0.085 (GBLUP), 0.335±0.063 (PBayesA), 0.347±0.093 (PBayesB) and 0.334±0.077 (PBayesCπ), respectively. Notably, parallel Bayesian models were more accurate than GBLUP across six traits. Our study suggested that genomic selections with multiple chains parallel Bayesian models are feasible for slaughter traits in Chinese Simmental cattle. The estimations of direct genomic breeding values using parallel Bayesian methods can offer important insights into improving prediction accuracy at young ages and may also help to identify superior candidates in breeding programs.

摘要

基因组选择已广泛应用于家畜复杂数量性状的研究。屠宰性状育种值的估计对肉牛产业至关重要,因此研究这些性状的基因组选择预测准确性很有价值。在本研究中,我们利用Illumina牛770K SNP芯片对中国西门塔尔牛的平均日增重(ADG)、活重(LW)、胴体重(CW)、屠宰率(DP)、瘦肉率(LMP)和零售肉重(RMW)进行了基因组预测能力评估。为了评估预测能力,使用基因组最佳线性无偏预测(GBLUP)和三个并行贝叶斯模型估计标记效应,包括多链并行贝叶斯A、贝叶斯B和贝叶斯Cπ(PBayesA、PBayesB和PBayesCπ)。训练集和验证集通过随机分配划分,并使用5折交叉验证评估预测准确性。我们发现基因组预测准确性范围为0.195±0.084(GBLUP法预测LMP)至0.424±0.147(PBayesB法预测CW)。各性状的平均准确性分别为0.327±0.085(GBLUP)、0.335±0.063(PBayesA)、0.347±0.093(PBayesB)和0.334±0.077(PBayesCπ)。值得注意的是,在六个性状上,并行贝叶斯模型比GBLUP更准确。我们的研究表明,采用多链并行贝叶斯模型进行基因组选择对中国西门塔尔牛的屠宰性状是可行的。使用并行贝叶斯方法估计直接基因组育种值可为提高幼龄动物的预测准确性提供重要见解,也有助于在育种计划中识别优良候选个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6be2/5516975/9ee56df3739a/pone.0179885.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验