Département de Parasitologie-Mycologie, Centre National de Référence des Leishmanioses, Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.
Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
J Clin Microbiol. 2017 Oct;55(10):2924-2933. doi: 10.1128/JCM.00845-17. Epub 2017 Jul 19.
Human leishmaniases are widespread diseases with different clinical forms caused by about 20 species within the genus. species identification is relevant for therapeutic management and prognosis, especially for cutaneous and mucocutaneous forms. Several methods are available to identify species from culture, but they have not been standardized for the majority of the currently described species, with the exception of multilocus enzyme electrophoresis. Moreover, these techniques are expensive, time-consuming, and not available in all laboratories. Within the last decade, mass spectrometry (MS) has been adapted for the identification of microorganisms, including However, no commercial reference mass-spectral database is available. In this study, a reference mass-spectral library (MSL) for isolates, accessible through a free Web-based application (mass-spectral identification [MSI]), was constructed and tested. It includes mass-spectral data for 33 different species, including species that infect humans, animals, and phlebotomine vectors. Four laboratories on two continents evaluated the performance of MSI using 268 samples, 231 of which were strains. All strains, but one, were correctly identified at least to the complex level. A risk of species misidentification within the , , and complexes was observed, as previously reported for other techniques. The tested application was reliable, with identification results being comparable to those obtained with reference methods but with a more favorable cost-efficiency ratio. This free online identification system relies on a scalable database and can be implemented directly in users' computers.
人类利什曼病是由大约 20 种利什曼属物种引起的具有不同临床形式的广泛分布的疾病。物种鉴定与治疗管理和预后相关,尤其是对于皮肤和黏膜形式。有几种方法可用于从培养物中鉴定物种,但除了多位点酶电泳外,这些方法尚未标准化用于目前描述的大多数物种。此外,这些技术昂贵、耗时且并非在所有实验室都可用。在过去十年中,质谱 (MS) 已被用于鉴定微生物,包括 。然而,没有可用的商业参考质量光谱数据库。在这项研究中,构建并测试了一个可通过免费网络应用程序(质量光谱鉴定 [MSI])访问的 分离株参考质量光谱库 (MSL)。它包括 33 种不同 物种的质量光谱数据,包括感染人类、动物和白蛉媒介的物种。两个大洲的四个实验室使用 268 个样本评估了 MSI 的性能,其中 231 个是 菌株。除了一个之外,所有 菌株都至少正确鉴定到复合体水平。在 、 和 复合体中观察到物种错误鉴定的风险,这与其他技术报道的结果一致。经过测试的应用程序是可靠的,其鉴定结果与参考方法相当,但具有更好的成本效益比。这个免费的在线识别系统依赖于一个可扩展的数据库,可以直接在用户的计算机上实现。
Clin Microbiol Infect. 2013-10-25
Med Trop Sante Int. 2023-2-17
Trop Med Infect Dis. 2022-10-28
Infect Dis Poverty. 2022-6-2
Microorganisms. 2021-3-11
Mol Aspects Med. 2017-1-31
PLoS Negl Trop Dis. 2016-3-3
Clin Microbiol Rev. 2015-4
PLoS Negl Trop Dis. 2014-6-5