Suppr超能文献

基于数据非依赖性采集的蛋白质组学增强差异表达统计分析。

Enhanced differential expression statistics for data-independent acquisition proteomics.

机构信息

Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.

Department of Future Technologies, University of Turku, FI-20014, Turku, Finland.

出版信息

Sci Rep. 2017 Jul 19;7(1):5869. doi: 10.1038/s41598-017-05949-y.

Abstract

We describe a new reproducibility-optimization method ROPECA for statistical analysis of proteomics data with a specific focus on the emerging data-independent acquisition (DIA) mass spectrometry technology. ROPECA optimizes the reproducibility of statistical testing on peptide-level and aggregates the peptide-level changes to determine differential protein-level expression. Using a 'gold standard' spike-in data and a hybrid proteome benchmark data we show the competitive performance of ROPECA over conventional protein-based analysis as well as state-of-the-art peptide-based tools especially in DIA data with consistent peptide measurements. Furthermore, we also demonstrate the improved accuracy of our method in clinical studies using proteomics data from a longitudinal human twin study.

摘要

我们描述了一种新的可重复性优化方法 ROPECA,用于对蛋白质组学数据进行统计分析,特别关注新兴的非依赖性采集(DIA)质谱技术。ROPECA 优化了基于肽水平的统计测试的可重复性,并将肽水平的变化聚合起来以确定差异蛋白水平的表达。使用“金标准”掺入数据和混合蛋白质组基准数据,我们展示了 ROPECA 在常规基于蛋白质的分析以及基于肽的最新工具方面的竞争性能,特别是在具有一致肽测量的 DIA 数据中。此外,我们还使用来自纵向人类双胞胎研究的蛋白质组学数据,展示了我们的方法在临床研究中的准确性的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c8/5517573/beb14a2ab639/41598_2017_5949_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验