Suppr超能文献

神经元自主转录组在缺血/再灌注损伤后的变化。

Neuron-autonomous transcriptome changes upon ischemia/reperfusion injury.

机构信息

Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair and Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.

Basic Medical Research Center, Medical School, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.

出版信息

Sci Rep. 2017 Jul 19;7(1):5800. doi: 10.1038/s41598-017-05342-9.

Abstract

Ischemic stroke and the following reperfusion, an acute therapeutic intervention, can cause irreversible brain damages. However, the underlying pathological mechanisms are still under investigation. To obtain a comprehensive, real-time view of the cell-autonomous mechanisms involved in ischemic stroke and reperfusion, we applied the next-generation sequencing (NGS) technology to characterize the temporal changes in gene expression profiles using primarily cultured hippocampal neurons under an oxygen-glucose deprivation/reperfusion (OGD/R) condition. We first identified the differentially expressed genes (DEGs) between normal cultured neurons, neurons with OGD, and neurons with OGD followed by reperfusion for 6 h, 12 h, and 18 h, respectively. We then performed bioinformatics analyses, including gene ontological (GO) and pathway analysis and co-expression network analysis to screen for novel key pathways and genes involved in the pathology of OGD/R. After we confirmed the changes of selected key genes in hippocampal cultures with OGD/R, we further validated their expression changes in an in vivo ischemic stroke model (MCAO). Finally, we demonstrated that prevention of the up-regulation of a key gene (Itga5) associated with OGD/R promoted hippocampal neuronal survival. Our research thereby provided novel insights into the molecular mechanisms in ischemic stroke pathophysiology and potential targets for therapeutic intervention after ischemic stroke.

摘要

缺血性中风和随后的再灌注,一种急性治疗干预措施,可导致不可逆转的脑损伤。然而,其潜在的病理机制仍在研究中。为了全面、实时地了解缺血性中风和再灌注过程中涉及的细胞自主机制,我们应用下一代测序(NGS)技术,使用原代培养的海马神经元在氧葡萄糖剥夺/再灌注(OGD/R)条件下,对基因表达谱的时间变化进行特征描述。我们首先鉴定了正常培养神经元、OGD 神经元和 OGD 后再灌注 6、12 和 18 小时的神经元之间的差异表达基因(DEGs)。然后,我们进行了生物信息学分析,包括基因本体(GO)和通路分析以及共表达网络分析,以筛选与 OGD/R 病理学相关的新关键途径和基因。在 OGD/R 海马培养物中确认了选定关键基因的变化后,我们进一步在体内缺血性中风模型(MCAO)中验证了它们的表达变化。最后,我们证明了预防与 OGD/R 相关的关键基因(Itga5)的上调可促进海马神经元存活。我们的研究因此为缺血性中风病理生理学的分子机制提供了新的见解,并为缺血性中风后治疗干预提供了潜在的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/5517505/07c22eab9106/41598_2017_5342_Fig1_HTML.jpg

相似文献

1
Neuron-autonomous transcriptome changes upon ischemia/reperfusion injury.
Sci Rep. 2017 Jul 19;7(1):5800. doi: 10.1038/s41598-017-05342-9.
2
Profiling neuron-autonomous lncRNA changes upon ischemia/reperfusion injury.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):104-109. doi: 10.1016/j.bbrc.2017.10.157. Epub 2017 Oct 31.
5
MicroRNA-323 regulates ischemia/reperfusion injury-induced neuronal cell death by targeting BRI3.
Int J Clin Exp Pathol. 2015 Sep 1;8(9):10725-33. eCollection 2015.
7
Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells.
Int J Mol Med. 2016 Aug;38(2):567-73. doi: 10.3892/ijmm.2016.2623. Epub 2016 Jun 3.
9
Transcriptomic Hallmarks of Hypoxic-Ischemic Brain Injury: Insights from an Model.
J Integr Neurosci. 2024 Jul 25;23(7):141. doi: 10.31083/j.jin2307141.

引用本文的文献

1
Exosomes derived from HUVECs alleviate ischemia-reperfusion induced inflammation in neural cells by upregulating KLF14 expression.
Front Pharmacol. 2024 May 2;15:1365928. doi: 10.3389/fphar.2024.1365928. eCollection 2024.
2
The atypical antidepressant tianeptine confers neuroprotection against oxygen-glucose deprivation.
Eur Arch Psychiatry Clin Neurosci. 2024 Jun;274(4):777-791. doi: 10.1007/s00406-023-01685-9. Epub 2023 Sep 1.
3
Transcriptomic Hallmarks of Ischemia-Reperfusion Injury.
Cells. 2021 Jul 20;10(7):1838. doi: 10.3390/cells10071838.
4
Growth Differentiation Factor-11 Causes Neurotoxicity During Ischemia .
Front Neurol. 2020 Sep 10;11:1023. doi: 10.3389/fneur.2020.01023. eCollection 2020.
6
Comparative transcriptome of neurons after oxygen-glucose deprivation: Potential differences in neuroprotection versus reperfusion.
J Cereb Blood Flow Metab. 2018 Dec;38(12):2236-2250. doi: 10.1177/0271678X18795986. Epub 2018 Aug 28.

本文引用的文献

1
Mice deficient in endothelial α5 integrin are profoundly resistant to experimental ischemic stroke.
J Cereb Blood Flow Metab. 2017 Jan;37(1):85-96. doi: 10.1177/0271678X15616979. Epub 2015 Nov 13.
2
Neuregulin 1 protects against ischemic brain injury via ErbB4 receptors by increasing GABAergic transmission.
Neuroscience. 2015 Oct 29;307:151-9. doi: 10.1016/j.neuroscience.2015.08.047. Epub 2015 Aug 28.
4
Single-cell imaging of bioenergetic responses to neuronal excitotoxicity and oxygen and glucose deprivation.
J Neurosci. 2014 Jul 30;34(31):10192-205. doi: 10.1523/JNEUROSCI.3127-13.2014.
5
Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases.
Neuron. 2014 Jul 2;83(1):27-49. doi: 10.1016/j.neuron.2014.06.007.
8
Reactive oxygen species in inflammation and tissue injury.
Antioxid Redox Signal. 2014 Mar 1;20(7):1126-67. doi: 10.1089/ars.2012.5149. Epub 2013 Oct 22.
9
microRNAs: innovative targets for cerebral ischemia and stroke.
Curr Drug Targets. 2013 Jan 1;14(1):90-101. doi: 10.2174/138945013804806424.
10
Transient focal cerebral ischemia induces long-term cerebral vasculature dysfunction in a rodent experimental stroke model.
Transl Stroke Res. 2012 Jun;3(2):279-85. doi: 10.1007/s12975-012-0148-y. Epub 2012 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验