Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, 62511, Beni-Suef, Egypt.
Augsburg University, Institute of Physics, Universitätsstrass 1, 86159, Augsburg, Germany.
Sci Rep. 2017 Jul 19;7(1):5946. doi: 10.1038/s41598-017-05750-x.
A new fundamental mechanism for reliable engineering of zinc oxide (ZnO) nanorods to nanoplatelets grafted MoO-MoO mixed oxide with controlled morphology, composition and precise understanding of the nanoscale reaction mechanism was developed. These hybrid nanomaterials are gaining interest due to their potential use for energy, catalysis, biomedical and other applications. As an introductory section, we demonstrate a new expansion for the concept 'materials engineering' by discussing the fabrication of metal oxides nanostructures by bottom-up approach and carbon nanoparticles by top-down approach. Moreover, we propose a detailed mechanism for the novel phenomenon that was experienced by ZnO nanorods when treated with phosphomolybdic acid (PMA) under ultra-sonication stimulus. This approach is expected to be the basis of a competitive fabrication approach to 2D hybrid nanostructures. We will also discuss a proposed mechanism for the catalytic deposition of MoO-MoO mixed oxide over ZnO nanoplatelets. A series of selection rules (SRs) which applied to ZnO to experience morphology transition and constitute Abdelmohsen theory for morphology transition engineering (ATMTE) will be demonstrated through the article, besides a brief discussion about possibility of other oxides to obey this theory.
开发了一种新的基本机制,可将氧化锌 (ZnO) 纳米棒可靠地工程化为具有受控形态、组成和精确纳米级反应机制理解的钼酸钼混合氧化物接枝的纳米板。由于它们在能源、催化、生物医学和其他应用中的潜在用途,这些混合纳米材料越来越受到关注。作为介绍性部分,我们通过讨论通过自下而上的方法制造金属氧化物纳米结构和通过自上而下的方法制造碳纳米粒子,展示了“材料工程”概念的新扩展。此外,我们提出了一个详细的机制,用于解释在超声刺激下用磷钼酸(PMA)处理 ZnO 纳米棒时所经历的新现象。这种方法有望成为制备二维混合纳米结构的竞争方法的基础。我们还将讨论在 ZnO 纳米板上催化沉积钼酸钼混合氧化物的提出机制。本文将通过一系列适用于 ZnO 经历形态转变的选择规则 (SR),展示 Abdelmohsen 形态转变工程学理论 (ATMTE),并简要讨论其他氧化物是否遵循这一理论的可能性。