新生大鼠炎症性白质损伤后的功能连接改变:一项高空间和时间分辨率的内在光学成像研究

Altered Functional Connectivity Following an Inflammatory White Matter Injury in the Newborn Rat: A High Spatial and Temporal Resolution Intrinsic Optical Imaging Study.

作者信息

Guevara Edgar, Pierre Wyston C, Tessier Camille, Akakpo Luis, Londono Irène, Lesage Frédéric, Lodygensky Gregory A

机构信息

Terahertz Science and Technology National Lab, CONACYT-Universidad Autónoma de San Luis Potosí, Coordinación para la Innovación y Aplicación de la Ciencia y la TecnologíaSan Luis Potosí, Mexico.

Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de MontréalMontreal, QC, Canada.

出版信息

Front Neurosci. 2017 Jul 4;11:358. doi: 10.3389/fnins.2017.00358. eCollection 2017.

Abstract

Very preterm newborns have an increased risk of developing an inflammatory cerebral white matter injury that may lead to severe neuro-cognitive impairment. In this study we performed functional connectivity (fc) analysis using resting-state optical imaging of intrinsic signals (rs-OIS) to assess the impact of inflammation on resting-state networks (RSN) in a pre-clinical model of perinatal inflammatory brain injury. Lipopolysaccharide (LPS) or saline injections were administered in postnatal day (P3) rat pups and optical imaging of intrinsic signals were obtained 3 weeks later. (rs-OIS) fc seed-based analysis including spatial extent were performed. A support vector machine (SVM) was then used to classify rat pups in two categories using fc measures and an artificial neural network (ANN) was implemented to predict lesion size from those same fc measures. A significant decrease in the spatial extent of fc statistical maps was observed in the injured group, across contrasts and seeds ( = 0.0452 for HbO and = 0.0036 for HbR). Both machine learning techniques were applied successfully, yielding 92% accuracy in group classification and a significant correlation = 0.9431 in fractional lesion volume prediction ( = 0.0020). Our results suggest that fc is altered in the injured newborn brain, showing the long-standing effect of inflammation.

摘要

极早产儿发生炎症性脑白质损伤的风险增加,这可能导致严重的神经认知障碍。在本研究中,我们使用内在信号的静息态光学成像(rs-OIS)进行功能连接(fc)分析,以评估炎症对围产期炎症性脑损伤临床前模型中静息态网络(RSN)的影响。在出生后第3天(P3)的大鼠幼崽中注射脂多糖(LPS)或生理盐水,并在3周后获得内在信号的光学成像。进行了包括空间范围的基于rs-OIS fc种子的分析。然后使用支持向量机(SVM)根据fc测量将大鼠幼崽分为两类,并使用人工神经网络(ANN)从相同的fc测量预测损伤大小。在损伤组中,观察到fc统计图的空间范围在所有对比和种子中均显著减小(HbO为 = 0.0452,HbR为 = 0.0036)。两种机器学习技术均成功应用,在组分类中准确率达到92%,在部分损伤体积预测中的显著相关性为 = 0.9431( = 0.0020)。我们的结果表明,损伤的新生大脑中fc发生改变,显示出炎症的长期影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9081/5495836/cb8cf3ed4573/fnins-11-00358-g0001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索