Faure Flora, Bokobza Cindy, Guenoun David, Van Steenwinckel Juliette, Gressens Pierre, Demené Charlie
Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, Paris, France.
Université Paris Cité, Inserm, NeuroDiderot, Paris, France.
Imaging Neurosci (Camb). 2025 Sep 2;3. doi: 10.1162/IMAG.a.128. eCollection 2025.
Functional ultrasound (fUS) is a promising imaging method for evaluating brain function in animals and human neonates. fUS images local cerebral blood volume changes to map brain activity. One application of fUS imaging is the quantification of functional connectivity (FC), which characterizes the strength of the connections between functionally connected brain areas. fUS-FC enables characterization of important cerebral alterations in pathological animal models, with potential for translation into identification of biomarkers of neurodevelopmental disorders. However, the sensitivity of fUS to signal sources other than cerebral activity, such as motion artifacts, cardiac pulsatility, anesthesia (if present), and respiration, limits its capacity to distinguish milder cerebral alterations. Here, we show that using canonical correlation analysis (CCA) preprocessing and dynamic functional connectivity analysis, we can efficiently decouple noise signals from the fUS-FC signal. We use this method to characterize the effects of a mild perinatal inflammation on FC in mice. The inflammation mouse model showed lower occurrence of states of high FC between the cortex, hippocampus, thalamus, and cerebellum as compared with controls, while connectivity states limited either to intracortical connections or to ventral pathways were more often observed in the inflammation model. These important differences could not be distinguished using other preprocessing techniques that we compared, such as global signal regression, highlighting the advantage of canonical correlation analysis for preprocessing fUS data. CCA preprocessing is applicable to a wide variety of fUS imaging experimental situations, from anesthetized to awake animal studies, or for neonatal, perinatal, or neurodevelopmental imaging. Beyond fUS imaging, this method can also be applied to FC data from any neuroimaging modality when the sources of noise can be spatially identified.
功能超声(fUS)是一种很有前景的成像方法,可用于评估动物和人类新生儿的脑功能。fUS通过成像局部脑血容量变化来绘制大脑活动图。fUS成像的一个应用是功能连接性(FC)的量化,它表征了功能连接的脑区之间连接的强度。fUS-FC能够表征病理动物模型中重要的大脑改变,具有转化为神经发育障碍生物标志物识别的潜力。然而,fUS对大脑活动以外的信号源敏感,如运动伪影、心脏搏动、麻醉(如果存在)和呼吸,这限制了其区分较轻大脑改变的能力。在这里,我们表明,使用典型相关分析(CCA)预处理和动态功能连接性分析,我们可以有效地将噪声信号与fUS-FC信号解耦。我们使用这种方法来表征轻度围产期炎症对小鼠FC的影响。与对照组相比,炎症小鼠模型中皮质、海马体、丘脑和小脑之间高FC状态的发生率较低,而在炎症模型中更常观察到仅限于皮质内连接或腹侧通路的连接状态。使用我们比较的其他预处理技术,如全局信号回归,无法区分这些重要差异,这突出了典型相关分析在预处理fUS数据方面的优势。CCA预处理适用于各种fUS成像实验情况,从麻醉动物研究到清醒动物研究,或用于新生儿、围产期或神经发育成像。除了fUS成像,当噪声源可以在空间上识别时,这种方法还可以应用于来自任何神经成像模态的FC数据。