Rajakaruna Harshana, Drake D Andrew R, T Chan Farrah, Bailey Sarah A
Great Lakes Laboratory for Fisheries and Aquatic Sciences Fisheries and Oceans Canada Burlington ON Canada.
Department of Biological Sciences University of Toronto Scarborough Toronto ON Canada.
Ecol Evol. 2016 Sep 22;6(20):7311-7322. doi: 10.1002/ece3.2463. eCollection 2016 Oct.
Understanding the functional relationship between the sample size and the performance of species richness estimators is necessary to optimize limited sampling resources against estimation error. Nonparametric estimators such as Chao and Jackknife demonstrate strong performances, but consensus is lacking as to which estimator performs better under constrained sampling. We explore a method to improve the estimators under such scenario. The method we propose involves randomly splitting species-abundance data from a single sample into two equally sized samples, and using an appropriate incidence-based estimator to estimate richness. To test this method, we assume a lognormal species-abundance distribution (SAD) with varying coefficients of variation (CV), generate samples using MCMC simulations, and use the expected mean-squared error as the performance criterion of the estimators. We test this method for Chao, Jackknife, ICE, and ACE estimators. Between abundance-based estimators with the single sample, and incidence-based estimators with the split-in-two samples, Chao2 performed the best when CV < 0.65, and incidence-based Jackknife performed the best when CV > 0.65, given that the ratio of sample size to observed species richness is greater than a critical value given by a power function of CV with respect to abundance of the sampled population. The proposed method increases the performance of the estimators substantially and is more effective when more rare species are in an assemblage. We also show that the splitting method works qualitatively similarly well when the SADs are log series, geometric series, and negative binomial. We demonstrate an application of the proposed method by estimating richness of zooplankton communities in samples of ballast water. The proposed splitting method is an alternative to sampling a large number of individuals to increase the accuracy of richness estimations; therefore, it is appropriate for a wide range of resource-limited sampling scenarios in ecology.
了解样本大小与物种丰富度估计器性能之间的函数关系,对于针对估计误差优化有限的采样资源而言是必要的。诸如Chao和Jackknife等非参数估计器表现出强大的性能,但对于在受限采样条件下哪种估计器表现更好,目前尚无定论。我们探索了一种在这种情况下改进估计器的方法。我们提出的方法包括将来自单个样本的物种丰度数据随机分成两个大小相等的样本,并使用合适的基于发生率的估计器来估计丰富度。为了测试该方法,我们假设具有不同变异系数(CV)的对数正态物种丰度分布(SAD),使用MCMC模拟生成样本,并将预期均方误差作为估计器的性能标准。我们对Chao、Jackknife、ICE和ACE估计器测试了该方法。在基于单个样本的丰度估计器和基于分成两个样本的发生率估计器之间,当CV < 0.65时,Chao2表现最佳;当CV > 0.65时,基于发生率的Jackknife表现最佳,前提是样本大小与观察到的物种丰富度之比大于由CV相对于采样种群丰度的幂函数给出的临界值。所提出的方法显著提高了估计器的性能,并且当一个组合中有更多稀有物种时更有效。我们还表明,当SAD为对数级数、几何级数和负二项式时,分裂方法在定性上同样有效。我们通过估计压载水样本中浮游动物群落的丰富度来展示所提出方法的应用。所提出的分裂方法是一种替代大量采样个体以提高丰富度估计准确性的方法;因此,它适用于生态学中广泛的资源受限采样场景。