Suppr超能文献

用于渐近最小物种丰富度估计量的充分抽样。

Sufficient sampling for asymptotic minimum species richness estimators.

作者信息

Chao Anne, Colwell Robert K, Lin Chih-Wei, Gotelli Nicholas J

机构信息

Institute of Statistics, National Tsing Hua University, Hsin-Chu, 30043 Taiwan.

出版信息

Ecology. 2009 Apr;90(4):1125-33. doi: 10.1890/07-2147.1.

Abstract

Biodiversity sampling is labor intensive, and a substantial fraction of a biota is often represented by species of very low abundance, which typically remain undetected by biodiversity surveys. Statistical methods are widely used to estimate the asymptotic number of species present, including species not yet detected. Additional sampling is required to detect and identify these species, but richness estimators do not indicate how much sampling effort (additional individuals or samples) would be necessary to reach the asymptote of the species accumulation curve. Here we develop the first statistically rigorous nonparametric method for estimating the minimum number of additional individuals, samples, or sampling area required to detect any arbitrary proportion (including 100%) of the estimated asymptotic species richness. The method uses the Chao1 and Chao2 nonparametric estimators of asymptotic richness, which are based on the frequencies of rare species in the original sampling data. To evaluate the performance of the proposed method, we randomly subsampled individuals or quadrats from two large biodiversity inventories (light trap captures of Lepidoptera in Great Britain and censuses of woody plants on Barro Colorado Island [BCI], Panama). The simulation results suggest that the method performs well but is slightly conservative for small sample sizes. Analyses of the BCI results suggest that the method is robust to nonindependence arising from small-scale spatial aggregation of species occurrences. When the method was applied to seven published biodiversity data sets, the additional sampling effort necessary to capture all the estimated species ranged from 1.05 to 10.67 times the original sample (median approximately equal to 2.23). Substantially less effort is needed to detect 90% of the species (0.33-1.10 times the original effort; median approximately equal to 0.80). An Excel spreadsheet tool is provided for calculating necessary sampling effort for either abundance data or replicated incidence data.

摘要

生物多样性采样需要耗费大量人力,而且生物群的很大一部分通常由极低丰度的物种代表,而这些物种在生物多样性调查中往往未被发现。统计方法被广泛用于估计现存物种的渐近数量,包括尚未被发现的物种。需要额外的采样来检测和识别这些物种,但丰富度估计器并未表明需要多少采样工作量(额外的个体或样本)才能达到物种积累曲线的渐近线。在此,我们开发了第一种统计上严格的非参数方法,用于估计检测估计的渐近物种丰富度的任意比例(包括100%)所需的最少额外个体数量、样本数量或采样面积。该方法使用基于原始采样数据中稀有物种频率的Chao1和Chao2渐近丰富度非参数估计器。为了评估所提出方法的性能,我们从两个大型生物多样性清单(英国鳞翅目昆虫的灯光诱捕捕获量以及巴拿马巴罗科罗拉多岛[BCI]木本植物的普查)中随机抽取个体或样方。模拟结果表明该方法表现良好,但对于小样本量略显保守。对BCI结果的分析表明,该方法对于由物种出现的小尺度空间聚集导致的非独立性具有稳健性。当将该方法应用于七个已发表的生物多样性数据集时,捕获所有估计物种所需的额外采样工作量为原始样本的1.05至10.67倍(中位数约等于2.23)。检测90%的物种所需的工作量要少得多(原始工作量的0.33 - 1.10倍;中位数约等于0.80)。我们提供了一个Excel电子表格工具,用于计算丰度数据或重复发生率数据所需的采样工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验