Suppr超能文献

物种丰富度估计方法的比较性能

Comparative performance of species richness estimation methods.

作者信息

Walther B A, Morand S

机构信息

Department of Zoology, Oxford University, UK.

出版信息

Parasitology. 1998 Apr;116 ( Pt 4):395-405. doi: 10.1017/s0031182097002230.

Abstract

In most real-world contexts the sampling effort needed to attain an accurate estimate of total species richness is excessive. Therefore, methods to estimate total species richness from incomplete collections need to be developed and tested. Using real and computer-simulated parasite data sets, the performances of 9 species richness estimation methods were compared. For all data sets, each estimation method was used to calculate the projected species richness at increasing levels of sampling effort. The performance of each method was evaluated by calculating the bias and precision of its estimates against the known total species richness. Performance was evaluated with increasing sampling effort and across different model communities. For the real data sets, the Chao2 and first-order jackknife estimators performed best. For the simulated data sets, the first-order jackknife estimator performed best at low sampling effort but, with increasing sampling effort, the bootstrap estimator outperformed all other estimators. Estimator performance increased with increasing species richness, aggregation level of individuals among samples and overall population size. Overall, the Chao2 and the first-order jackknife estimation methods performed best and should be used to control for the confounding effects of sampling effort in studies of parasite species richness. Potential uses of and practical problems with species richness estimation methods are discussed.

摘要

在大多数实际情况下,要获得对物种总丰富度的准确估计所需的采样工作量过大。因此,需要开发并测试从不完整样本中估计物种总丰富度的方法。利用真实的和计算机模拟的寄生虫数据集,比较了9种物种丰富度估计方法的性能。对于所有数据集,每种估计方法都用于计算在不断增加的采样工作量水平下预测的物种丰富度。通过计算每种方法的估计值相对于已知物种总丰富度的偏差和精度来评估其性能。随着采样工作量的增加以及在不同的模型群落中对性能进行了评估。对于真实数据集,Chao2和一阶刀切法估计器表现最佳。对于模拟数据集,一阶刀切法估计器在低采样工作量时表现最佳,但随着采样工作量的增加,自助法估计器优于所有其他估计器。估计器性能随着物种丰富度、样本间个体聚集水平和总体种群规模的增加而提高。总体而言,Chao2和一阶刀切法估计方法表现最佳,应在寄生虫物种丰富度研究中用于控制采样工作量的混杂效应。讨论了物种丰富度估计方法的潜在用途和实际问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验