Sallaberry-Pincheira Nicole, González-Acuña Daniel, Padilla Pamela, Dantas Gisele P M, Luna-Jorquera Guillermo, Frere Esteban, Valdés-Velásquez Armando, Vianna Juliana A
Laboratorio de Biodiversidad Molecular Departamento de Ecosistemas y Medio Ambiente Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago Chile.
Escuela de Medicina Veterinaria Facultad Ecología y Recursos Naturales Universidad Andrés Bello Santiago Chile.
Ecol Evol. 2016 Sep 28;6(20):7498-7510. doi: 10.1002/ece3.2502. eCollection 2016 Oct.
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
面临新发传染病的种群或物种的进化和适应潜力取决于其在主要组织相容性复合体(MHC)等基因中的遗传多样性。在鸟类中,MHC I类主要处理细胞内感染(如病毒),而MHC II类处理细胞外感染(如细菌)。因此,MHC I和II的多样性模式在不同物种之间以及同一物种的不同种群之间可能会有所不同,这取决于局部和全球环境选择压力、遗传漂变和基因流的相对影响。我们假设,洪堡企鹅和麦哲伦企鹅种群之间的高基因流限制了MHC I和MHC II的局部适应性,并且选择特征在标记、位置和物种之间存在差异。我们使用454下一代测序技术对来自七个不同繁殖群体的100只洪堡企鹅和75只麦哲伦企鹅的MHC I和II多样性进行了评估。两个物种的MHC I的遗传多样性均高于MHC II,这是由多个已鉴定的MHC I位点所解释的。大种群规模、高基因流和/或相似的选择压力维持了多样性,但限制了MHC I的局部适应性。对于洪堡企鹅的MHC II,观察到了距离隔离模式,这表明存在局部适应性,主要在最北端的研究地点。此外,由于该属最近的物种形成或趋同进化,发现了跨物种等位基因。所描述的高MHC I和MHC II基因多样性对该物种的长期生存极为有利。