Suppr超能文献

洪堡企鹅和麦哲伦企鹅种群中MHC I和II之间不同的选择模式。

Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.

作者信息

Sallaberry-Pincheira Nicole, González-Acuña Daniel, Padilla Pamela, Dantas Gisele P M, Luna-Jorquera Guillermo, Frere Esteban, Valdés-Velásquez Armando, Vianna Juliana A

机构信息

Laboratorio de Biodiversidad Molecular Departamento de Ecosistemas y Medio Ambiente Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago Chile.

Escuela de Medicina Veterinaria Facultad Ecología y Recursos Naturales Universidad Andrés Bello Santiago Chile.

出版信息

Ecol Evol. 2016 Sep 28;6(20):7498-7510. doi: 10.1002/ece3.2502. eCollection 2016 Oct.

Abstract

The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.

摘要

面临新发传染病的种群或物种的进化和适应潜力取决于其在主要组织相容性复合体(MHC)等基因中的遗传多样性。在鸟类中,MHC I类主要处理细胞内感染(如病毒),而MHC II类处理细胞外感染(如细菌)。因此,MHC I和II的多样性模式在不同物种之间以及同一物种的不同种群之间可能会有所不同,这取决于局部和全球环境选择压力、遗传漂变和基因流的相对影响。我们假设,洪堡企鹅和麦哲伦企鹅种群之间的高基因流限制了MHC I和MHC II的局部适应性,并且选择特征在标记、位置和物种之间存在差异。我们使用454下一代测序技术对来自七个不同繁殖群体的100只洪堡企鹅和75只麦哲伦企鹅的MHC I和II多样性进行了评估。两个物种的MHC I的遗传多样性均高于MHC II,这是由多个已鉴定的MHC I位点所解释的。大种群规模、高基因流和/或相似的选择压力维持了多样性,但限制了MHC I的局部适应性。对于洪堡企鹅的MHC II,观察到了距离隔离模式,这表明存在局部适应性,主要在最北端的研究地点。此外,由于该属最近的物种形成或趋同进化,发现了跨物种等位基因。所描述的高MHC I和MHC II基因多样性对该物种的长期生存极为有利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0f/5513272/87156cbc0d73/ECE3-6-7498-g001.jpg

相似文献

1
Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.
Ecol Evol. 2016 Sep 28;6(20):7498-7510. doi: 10.1002/ece3.2502. eCollection 2016 Oct.
2
MHC diversity and mate choice in the magellanic penguin, Spheniscus magellanicus.
J Hered. 2012 Nov-Dec;103(6):759-68. doi: 10.1093/jhered/ess054. Epub 2012 Sep 4.
3
Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).
Immunogenetics. 2007 Jul;59(7):593-602. doi: 10.1007/s00251-007-0221-y. Epub 2007 Apr 25.
4
The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus).
PLoS One. 2020 Jan 7;15(1):e0226439. doi: 10.1371/journal.pone.0226439. eCollection 2020.
7
Analysis of the sequence variations in the Mhc DRB1-like gene of the endangered Humboldt penguin (Spheniscus humboldti).
Immunogenetics. 2005 Apr;57(1-2):99-107. doi: 10.1007/s00251-005-0774-6. Epub 2005 Feb 16.
9
Diversity of MHC class I alleles in Spheniscus humboldti.
Immunogenetics. 2017 Feb;69(2):113-124. doi: 10.1007/s00251-016-0951-9. Epub 2016 Sep 21.
10
Trans-species polymorphism of the Mhc class II DRB-like gene in banded penguins (genus Spheniscus).
Immunogenetics. 2009 May;61(5):341-52. doi: 10.1007/s00251-009-0363-1. Epub 2009 Mar 25.

引用本文的文献

1
Associations among MHC genes, latitude, and avian malaria infections in the rufous-collared sparrow ().
Ecol Evol. 2024 Jul 17;14(7):e11634. doi: 10.1002/ece3.11634. eCollection 2024 Jul.
2
Partial molecular characterization, expression pattern and polymorphism analysis of MHC I genes in Chinese domestic goose (Anser cygnoides).
Genet Mol Biol. 2024 Jul 8;47(2):e20220252. doi: 10.1590/1678-4685-GMB-2022-0252. eCollection 2024.
3
Clonal dissemination of Acinetobacter radioresistens among Humboldt penguins (Spheniscus humboldti) inhabiting a barren northern Peruvian island.
Eur J Microbiol Immunol (Bp). 2024 Mar 14;14(2):210-218. doi: 10.1556/1886.2023.00066. Print 2024 May 14.
4
Genetic variation at innate and adaptive immune genes - contrasting patterns of differentiation and local adaptation in a wild gull.
Heredity (Edinb). 2023 Oct;131(4):282-291. doi: 10.1038/s41437-023-00645-2. Epub 2023 Aug 8.
5
Selection and demography drive range-wide patterns of MHC-DRB variation in mule deer.
BMC Ecol Evol. 2022 Apr 6;22(1):42. doi: 10.1186/s12862-022-01998-8.
7
Adaptation and Cryptic Pseudogenization in Penguin Toll-Like Receptors.
Mol Biol Evol. 2022 Jan 7;39(1). doi: 10.1093/molbev/msab354.
8
Distinct evolutionary trajectories of MHC class I and class II genes in Old World finches and buntings.
Heredity (Edinb). 2021 Jun;126(6):974-990. doi: 10.1038/s41437-021-00427-8. Epub 2021 Apr 6.
10
Evidence of Pathogen-Induced Immunogenetic Selection across the Large Geographic Range of a Wild Seabird.
Mol Biol Evol. 2020 Jun 1;37(6):1708-1726. doi: 10.1093/molbev/msaa040.

本文引用的文献

1
The Evolution of Mating Preferences and Major Histocompatibility Complex Genes.
Am Nat. 1999 Feb;153(2):145-164. doi: 10.1086/303166.
2
Contrasting patterns of selection and drift between two categories of immune genes in prairie-chickens.
Mol Ecol. 2015 Dec;24(24):6095-106. doi: 10.1111/mec.13459. Epub 2015 Dec 7.
3
Comparative genomic data of the Avian Phylogenomics Project.
Gigascience. 2014 Dec 11;3(1):26. doi: 10.1186/2047-217X-3-26. eCollection 2014.
4
Molecular Epidemiology of Avian Malaria in Wild Breeding Colonies of Humboldt and Magellanic Penguins in South America.
Ecohealth. 2015 Jun;12(2):267-77. doi: 10.1007/s10393-014-0995-y. Epub 2014 Dec 10.
5
Evidence for a recent origin of penguins.
Biol Lett. 2013 Nov 13;9(6):20130748. doi: 10.1098/rsbl.2013.0748. Print 2013.
8
MHC diversity and mate choice in the magellanic penguin, Spheniscus magellanicus.
J Hered. 2012 Nov-Dec;103(6):759-68. doi: 10.1093/jhered/ess054. Epub 2012 Sep 4.
10
Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus).
Mol Ecol. 2012 Mar;21(6):1379-93. doi: 10.1111/j.1365-294X.2012.05477.x. Epub 2012 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验