Chaudhuri Rima, Khoo Poh Sim, Tonks Katherine, Junutula Jagath R, Kolumam Ganesh, Modrusan Zora, Samocha-Bonet Dorit, Meoli Christopher C, Hocking Samantha, Fazakerley Daniel J, Stöckli Jacqueline, Hoehn Kyle L, Greenfield Jerry R, Yang Jean Yee Hwa, James David E
Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia.
Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
NPJ Syst Biol Appl. 2015 Nov 12;1:15010. doi: 10.1038/npjsba.2015.10. eCollection 2015.
Insulin resistance (IR) is one of the earliest predictors of type 2 diabetes. However, diagnosis of IR is limited. High fat fed mouse models provide key insights into IR. We hypothesized that early features of IR are associated with persistent changes in gene expression (GE) and endeavored to (a) develop novel methods for improving signal:noise in analysis of human GE using mouse models; (b) identify a GE motif that accurately diagnoses IR in humans; and (c) identify novel biology associated with IR in humans.
We integrated human muscle GE data with longitudinal mouse GE data and developed an unbiased three-level cross-species analysis platform (single gene, gene set, and networks) to generate a gene expression motif (GEM) indicative of IR. A logistic regression classification model validated GEM in three independent human data sets (=115).
This GEM of 93 genes substantially improved diagnosis of IR compared with routine clinical measures across multiple independent data sets. Individuals misclassified by GEM possessed other metabolic features raising the possibility that they represent a separate metabolic subclass. The GEM was enriched in pathways previously implicated in insulin action and revealed novel associations between and and IR. Functional analyses using small molecule inhibitors showed an important role for these proteins in insulin action.
This study shows that systems approaches for identifying molecular signatures provides a powerful way to stratify individuals into discrete metabolic groups. Moreover, we speculate that the β-catenin pathway may represent a novel biomarker for IR in humans that warrant future investigation.
胰岛素抵抗(IR)是2型糖尿病最早的预测指标之一。然而,IR的诊断存在局限性。高脂喂养的小鼠模型为IR提供了关键见解。我们假设IR的早期特征与基因表达(GE)的持续变化相关,并致力于:(a)开发新方法以改善在使用小鼠模型分析人类GE时的信号噪声;(b)识别能准确诊断人类IR的GE基序;(c)识别与人类IR相关的新生物学现象。
我们将人类肌肉GE数据与纵向小鼠GE数据整合,并开发了一个无偏倚的三级跨物种分析平台(单基因、基因集和网络),以生成指示IR的基因表达基序(GEM)。一个逻辑回归分类模型在三个独立的人类数据集(n = 115)中验证了GEM。
与多个独立数据集中的常规临床测量相比,这个由93个基因组成的GEM显著改善了IR的诊断。被GEM错误分类的个体具有其他代谢特征,这增加了他们代表一个单独代谢亚类的可能性。该GEM在先前与胰岛素作用相关的通路中富集,并揭示了β-连环蛋白和IR之间的新关联。使用小分子抑制剂的功能分析表明这些蛋白质在胰岛素作用中起重要作用。
本研究表明,识别分子特征的系统方法为将个体分层到离散的代谢组中提供了一种强大的方法。此外,我们推测β-连环蛋白通路可能代表人类IR的一种新生物标志物,值得未来研究。