Center for Biophysics and Quantitative Biology and ‡Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
J Phys Chem B. 2017 Oct 26;121(42):9761-9770. doi: 10.1021/acs.jpcb.7b04785. Epub 2017 Aug 4.
Double electron-electron resonance (DEER) spectroscopy is a powerful experimental technique for understanding the conformational heterogeneity of proteins. It involves attaching nitroxide spin labels to two residues in the protein to obtain a distance distribution between them. However, the choice of residue pairs to label in the protein requires careful thought, as experimentalists must pick label positions from a large set of all possible residue-pair combinations in the protein. In this article, we address the problem of the choice of DEER spin-label positions in a protein. For this purpose, we utilize all-atom molecular dynamics simulations of protein dynamics, to rank the sets of labeled residue pairs in terms of their ability to capture the conformational dynamics of the protein. Our design methodology is based on the following two criteria: (1) An ideal set of DEER spin-label positions should capture the slowest conformational-change processes observed in the protein dynamics, and (2) any two sets of residue pairs should describe orthogonal conformational-change processes to maximize the overall information gain and reduce the number of labeled residue pairs. We utilize Markov state models of protein dynamics to identify slow dynamical processes and a genetic-algorithm-based approach to predict the optimal choices of residue pairs with limited computational time requirements. We predict the optimal residue pairs for DEER spectroscopy in β adrenergic receptor, the C-terminal domain of calmodulin, and peptide transporter PepT. We find that our choices were ranked higher than those used to perform DEER experiments on the proteins investigated in this study. Hence, the predicted choices of DEER residue pairs determined by our method provide maximum insight into the conformational heterogeneity of the protein while using the minimum number of labeled residues.
双电子-电子共振(DEER)光谱学是一种用于理解蛋白质构象异质性的强大实验技术。它涉及将氮氧自由基自旋标记物附着到蛋白质中的两个残基上,以获得它们之间的距离分布。然而,在蛋白质中选择要标记的残基对需要仔细考虑,因为实验人员必须从蛋白质中所有可能的残基对组合的大集合中选择标记位置。在本文中,我们解决了在蛋白质中选择 DEER 自旋标记位置的问题。为此,我们利用蛋白质动力学的全原子分子动力学模拟,根据它们捕获蛋白质构象动力学的能力对标记残基对的集合进行排序。我们的设计方法基于以下两个标准:(1)理想的 DEER 自旋标记位置集应捕获蛋白质动力学中观察到的最慢构象变化过程,(2)任何两个残基对集应描述正交的构象变化过程,以最大限度地提高整体信息增益并减少标记残基对的数量。我们利用蛋白质动力学的马尔可夫状态模型来识别慢动力学过程,以及基于遗传算法的方法来预测在有限的计算时间要求下具有最佳选择的残基对。我们预测了β肾上腺素能受体、钙调蛋白 C 端结构域和肽转运蛋白 PepT 中 DEER 光谱学的最佳残基对。我们发现,我们的选择在这些研究中进行 DEER 实验的蛋白质中使用的选择的排名更高。因此,我们方法确定的 DEER 残基对的预测选择在使用最少数量的标记残基的同时,为蛋白质的构象异质性提供了最大的洞察力。