Suppr超能文献

小角 X 射线散射引导的增强无偏采样在蛋白质和复合物结构测定中的应用。

SAXS-guided Enhanced Unbiased Sampling for Structure Determination of Proteins and Complexes.

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.

Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.

出版信息

Sci Rep. 2018 Dec 10;8(1):17748. doi: 10.1038/s41598-018-36090-z.

Abstract

Molecular simulations can be utilized to predict protein structure ensembles and dynamics, though sufficient sampling of molecular ensembles and identification of key biologically relevant conformations remains challenging. Low-resolution experimental techniques provide valuable structural information on biomolecule at near-native conditions, which are often combined with molecular simulations to determine and refine protein structural ensembles. In this study, we demonstrate how small angle x-ray scattering (SAXS) information can be incorporated in Markov state model-based adaptive sampling strategy to enhance time efficiency of unbiased MD simulations and identify functionally relevant conformations of proteins and complexes. Our results show that using SAXS data combined with additional information, such as thermodynamics and distance restraints, we are able to distinguish otherwise degenerate structures due to the inherent ambiguity of SAXS pattern. We further demonstrate that adaptive sampling guided by SAXS and hybrid information can significantly reduce the computation time required to discover target structures. Overall, our findings demonstrate the potential of this hybrid approach in predicting near-native structures of proteins and complexes. Other low-resolution experimental information can be incorporated in a similar manner to collectively enhance unbiased sampling and improve the accuracy of structure prediction from simulation.

摘要

分子模拟可用于预测蛋白质结构集合和动力学,但充分采样分子集合和识别关键的生物学相关构象仍然具有挑战性。低分辨率实验技术可提供接近天然条件下生物分子的有价值的结构信息,这些信息通常与分子模拟结合使用,以确定和细化蛋白质结构集合。在这项研究中,我们展示了如何将小角 X 射线散射 (SAXS) 信息纳入基于马尔可夫状态模型的自适应采样策略中,以提高无偏 MD 模拟的时间效率并识别蛋白质和复合物的功能相关构象。我们的结果表明,使用 SAXS 数据结合其他信息,如热力学和距离约束,可以区分由于 SAXS 模式的固有模糊性而导致的原本退化的结构。我们进一步证明,由 SAXS 和混合信息引导的自适应采样可以显著减少发现目标结构所需的计算时间。总的来说,我们的研究结果表明了这种混合方法在预测蛋白质和复合物的近天然结构方面的潜力。可以以类似的方式纳入其他低分辨率实验信息,以共同增强无偏采样并提高从模拟中预测结构的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66d/6288155/b67b18c597e2/41598_2018_36090_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验