van Dijk Marjolein J A M, Claassen Tom, Suwartono Christiany, van der Veld William M, van der Heijden Paul T, Hendriks Marc P H
a Academic Centre for Epileptology, Kempenhaeghe , Heeze , The Netherlands.
b Faculty of Science , Radboud University , Nijmegen , The Netherlands.
Clin Neuropsychol. 2017 Aug-Oct;31(6-7):1141-1154. doi: 10.1080/13854046.2017.1352029. Epub 2017 Jul 20.
Since the publication of the WAIS-IV in the U.S. in 2008, efforts have been made to explore the structural validity by applying factor analysis to various samples. This study aims to achieve a more fine-grained understanding of the structure of the Dutch language version of the WAIS-IV (WAIS-IV-NL) by applying an alternative analysis based on causal modeling in addition to confirmatory factor analysis (CFA). The Bayesian Constraint-based Causal Discovery (BCCD) algorithm learns underlying network structures directly from data and assesses more complex structures than is possible with factor analysis.
WAIS-IV-NL profiles of two clinical samples of 202 patients (i.e. patients with temporal lobe epilepsy and a mixed psychiatric outpatient group) were analyzed and contrasted with a matched control group (N = 202) selected from the Dutch standardization sample of the WAIS-IV-NL to investigate internal structure by means of CFA and BCCD.
With CFA, the four-factor structure as proposed by Wechsler demonstrates acceptable fit in all three subsamples. However, BCCD revealed three consistent clusters (verbal comprehension, visual processing, and processing speed) in all three subsamples. The combination of Arithmetic and Digit Span as a coherent working memory factor could not be verified, and Matrix Reasoning appeared to be isolated.
With BCCD, some discrepancies from the proposed four-factor structure are exemplified. Furthermore, these results fit CHC theory of intelligence more clearly. Consistent clustering patterns indicate these results are robust. The structural causal discovery approach may be helpful in better interpreting existing tests, the development of new tests, and aid in diagnostic instruments.
自2008年美国发布韦氏成人智力量表第四版(WAIS-IV)以来,人们一直在努力通过对不同样本应用因素分析来探索其结构效度。本研究旨在通过除验证性因素分析(CFA)之外应用基于因果建模的替代分析,更细致地了解荷兰语版WAIS-IV(WAIS-IV-NL)的结构。基于贝叶斯约束的因果发现(BCCD)算法直接从数据中学习潜在的网络结构,并评估比因素分析更复杂的结构。
分析了202名患者的两个临床样本(即颞叶癫痫患者和混合精神科门诊患者组)的WAIS-IV-NL剖面图,并与从WAIS-IV-NL荷兰标准化样本中选取的匹配对照组(N = 202)进行对比,以通过CFA和BCCD研究内部结构。
使用CFA时,韦氏提出的四因素结构在所有三个子样本中均显示出可接受的拟合度。然而,BCCD在所有三个子样本中都揭示了三个一致的聚类(言语理解、视觉处理和处理速度)。无法验证将算术和数字广度组合为一个连贯的工作记忆因素,并且矩阵推理似乎是孤立的。
通过BCCD,例证了与提议的四因素结构存在一些差异。此外,这些结果更清晰地符合CHC智力理论。一致的聚类模式表明这些结果是可靠的。结构因果发现方法可能有助于更好地解释现有测试、开发新测试以及辅助诊断工具。