Suppr超能文献

通过不同的心理测量视角评估韦氏成人智力量表第四版(WAIS-IV)的结构:结构因果模型发现作为验证性因素分析的替代方法。

Evaluating WAIS-IV structure through a different psychometric lens: structural causal model discovery as an alternative to confirmatory factor analysis.

作者信息

van Dijk Marjolein J A M, Claassen Tom, Suwartono Christiany, van der Veld William M, van der Heijden Paul T, Hendriks Marc P H

机构信息

a Academic Centre for Epileptology, Kempenhaeghe , Heeze , The Netherlands.

b Faculty of Science , Radboud University , Nijmegen , The Netherlands.

出版信息

Clin Neuropsychol. 2017 Aug-Oct;31(6-7):1141-1154. doi: 10.1080/13854046.2017.1352029. Epub 2017 Jul 20.

Abstract

OBJECTIVE

Since the publication of the WAIS-IV in the U.S. in 2008, efforts have been made to explore the structural validity by applying factor analysis to various samples. This study aims to achieve a more fine-grained understanding of the structure of the Dutch language version of the WAIS-IV (WAIS-IV-NL) by applying an alternative analysis based on causal modeling in addition to confirmatory factor analysis (CFA). The Bayesian Constraint-based Causal Discovery (BCCD) algorithm learns underlying network structures directly from data and assesses more complex structures than is possible with factor analysis.

METHOD

WAIS-IV-NL profiles of two clinical samples of 202 patients (i.e. patients with temporal lobe epilepsy and a mixed psychiatric outpatient group) were analyzed and contrasted with a matched control group (N = 202) selected from the Dutch standardization sample of the WAIS-IV-NL to investigate internal structure by means of CFA and BCCD.

RESULTS

With CFA, the four-factor structure as proposed by Wechsler demonstrates acceptable fit in all three subsamples. However, BCCD revealed three consistent clusters (verbal comprehension, visual processing, and processing speed) in all three subsamples. The combination of Arithmetic and Digit Span as a coherent working memory factor could not be verified, and Matrix Reasoning appeared to be isolated.

CONCLUSIONS

With BCCD, some discrepancies from the proposed four-factor structure are exemplified. Furthermore, these results fit CHC theory of intelligence more clearly. Consistent clustering patterns indicate these results are robust. The structural causal discovery approach may be helpful in better interpreting existing tests, the development of new tests, and aid in diagnostic instruments.

摘要

目的

自2008年美国发布韦氏成人智力量表第四版(WAIS-IV)以来,人们一直在努力通过对不同样本应用因素分析来探索其结构效度。本研究旨在通过除验证性因素分析(CFA)之外应用基于因果建模的替代分析,更细致地了解荷兰语版WAIS-IV(WAIS-IV-NL)的结构。基于贝叶斯约束的因果发现(BCCD)算法直接从数据中学习潜在的网络结构,并评估比因素分析更复杂的结构。

方法

分析了202名患者的两个临床样本(即颞叶癫痫患者和混合精神科门诊患者组)的WAIS-IV-NL剖面图,并与从WAIS-IV-NL荷兰标准化样本中选取的匹配对照组(N = 202)进行对比,以通过CFA和BCCD研究内部结构。

结果

使用CFA时,韦氏提出的四因素结构在所有三个子样本中均显示出可接受的拟合度。然而,BCCD在所有三个子样本中都揭示了三个一致的聚类(言语理解、视觉处理和处理速度)。无法验证将算术和数字广度组合为一个连贯的工作记忆因素,并且矩阵推理似乎是孤立的。

结论

通过BCCD,例证了与提议的四因素结构存在一些差异。此外,这些结果更清晰地符合CHC智力理论。一致的聚类模式表明这些结果是可靠的。结构因果发现方法可能有助于更好地解释现有测试、开发新测试以及辅助诊断工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验