Suppr超能文献

基于多彩色加深度图像的逆向渲染与重光照。

Inverse Rendering and Relighting From Multiple Color Plus Depth Images.

出版信息

IEEE Trans Image Process. 2017 Oct;26(10):4951-4961. doi: 10.1109/TIP.2017.2728184. Epub 2017 Jul 18.

Abstract

We propose a novel relighting approach that takes advantage of multiple color plus depth images acquired from a consumer camera. Assuming distant illumination and Lambertian reflectance, we model the reflected light field in terms of spherical harmonic coefficients of the bi-directional reflectance distribution function and lighting. We make use of the noisy depth information together with color images taken under different illumination conditions to refine surface normals inferred from depth. We first perform refinement on the surface normals using the first order spherical harmonics. We initialize this non-linear optimization with a linear approximation to greatly reduce computation time. With surface normals refined, we formulate the recovery of albedo and lighting in a matrix factorization setting, involving second order spherical harmonics. Albedo and lighting coefficients are recovered up to a global scaling ambiguity. We demonstrate our method on both simulated and real data, and show that it can successfully recover both illumination and albedo to produce realistic relighting results.

摘要

我们提出了一种新颖的重光照方法,该方法利用从消费级相机获取的多个彩色加深度图像。假设远距离照明和朗伯反射率,我们根据双向反射分布函数和照明的球谐系数来建模反射光场。我们利用有噪声的深度信息和在不同照明条件下拍摄的彩色图像来细化从深度推断出的表面法向。我们首先使用一阶球谐函数对表面法向进行细化。我们用线性逼近初始化这个非线性优化,以大大减少计算时间。在表面法向细化后,我们在矩阵分解设置中公式化了对反射率和照明的恢复,涉及二阶球谐函数。反射率和照明系数可以恢复到全局缩放模糊度。我们在模拟和真实数据上展示了我们的方法,并表明它可以成功地恢复照明和反射率,以产生逼真的重光照效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验