Suppr超能文献

非参数联合形状和特征先验在图像分割中的应用。

Nonparametric Joint Shape and Feature Priors for Image Segmentation.

出版信息

IEEE Trans Image Process. 2017 Nov;26(11):5312-5323. doi: 10.1109/TIP.2017.2728185. Epub 2017 Jul 17.

Abstract

In many image segmentation problems involving limited and low-quality data, employing statistical prior information about the shapes of the objects to be segmented can significantly improve the segmentation result. However, defining probability densities in the space of shapes is an open and challenging problem, especially if the object to be segmented comes from a shape density involving multiple modes (classes). Existing techniques in the literature estimate the underlying shape distribution by extending Parzen density estimator to the space of shapes. In these methods, the evolving curve may converge to a shape from a wrong mode of the posterior density when the observed intensities provide very little information about the object boundaries. In such scenarios, employing both shape- and class-dependent discriminative feature priors can aid the segmentation process. Such features may involve, e.g., intensity-based, textural, or geometric information about the objects to be segmented. In this paper, we propose a segmentation algorithm that uses nonparametric joint shape and feature priors constructed by Parzen density estimation. We incorporate the learned joint shape and feature prior distribution into a maximum a posteriori estimation framework for segmentation. The resulting optimization problem is solved using active contours. We present experimental results on a variety of synthetic and real data sets from several fields involving multimodal shape densities. Experimental results demonstrate the potential of the proposed method.

摘要

在许多涉及有限和低质量数据的图像分割问题中,利用关于要分割的对象形状的统计先验信息可以显著改善分割结果。然而,在形状空间中定义概率密度是一个开放且具有挑战性的问题,特别是如果要分割的对象来自涉及多个模式(类)的形状密度。文献中的现有技术通过将 Parzen 密度估计扩展到形状空间来估计基础形状分布。在这些方法中,当观察到的强度对对象边界几乎没有提供任何信息时,演化曲线可能会收敛到后验密度的错误模式的形状。在这种情况下,使用形状和类相关的判别特征先验可以辅助分割过程。这些特征可能涉及要分割的对象的基于强度的、纹理的或几何信息。在本文中,我们提出了一种分割算法,该算法使用通过 Parzen 密度估计构造的非参数联合形状和特征先验。我们将学习到的联合形状和特征先验分布纳入用于分割的最大后验估计框架中。使用主动轮廓线解决由此产生的优化问题。我们在涉及多模态形状密度的几个领域的各种合成和真实数据集上展示了实验结果。实验结果证明了所提出方法的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验