Suppr超能文献

ShapeCut:基于形状驱动图的贝叶斯曲面估计。

ShapeCut: Bayesian surface estimation using shape-driven graph.

机构信息

Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, USA.

Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, USA; Faculty of Computers and Information, Cairo University, Egypt.

出版信息

Med Image Anal. 2017 Aug;40:11-29. doi: 10.1016/j.media.2017.04.005. Epub 2017 Apr 29.

Abstract

A variety of medical image segmentation problems present significant technical challenges, including heterogeneous pixel intensities, noisy/ill-defined boundaries and irregular shapes with high variability. The strategy of estimating optimal segmentations within a statistical framework that combines image data with priors on anatomical structures promises to address some of these technical challenges. However, methods that rely on local optimization techniques and/or local shape penalties (e.g., smoothness) have been proven to be inadequate for many difficult segmentation problems. These challenging segmentation problems can benefit from the inclusion of global shape priors within a maximum-a-posteriori estimation framework, which biases solutions toward an object class of interest. In this paper, we propose a maximum-a-posteriori formulation that relies on a generative image model by incorporating both local and global shape priors. The proposed method relies on graph cuts as well as a new shape parameters estimation that provides a global updates-based optimization strategy. We demonstrate our approach on synthetic datasets as well as on the left atrial wall segmentation from late-gadolinium enhancement MRI, which has been shown to be effective for identifying myocardial fibrosis in the diagnosis of atrial fibrillation. Experimental results prove the effectiveness of the proposed approach in terms of the average surface distance between extracted surfaces and the corresponding ground-truth, as well as the clinical efficacy of the method in the identification of fibrosis and scars in the atrial wall.

摘要

各种医学图像分割问题都存在重大的技术挑战,包括不均匀的像素强度、噪声/定义不明确的边界以及具有高度可变性的不规则形状。在统计框架内估计最佳分割的策略,该框架结合了图像数据和解剖结构的先验知识,有望解决其中的一些技术挑战。然而,依赖于局部优化技术和/或局部形状惩罚(例如,平滑度)的方法已被证明对于许多困难的分割问题是不够的。这些具有挑战性的分割问题可以从在最大后验估计框架内包含全局形状先验中受益,这将解决方案偏向于感兴趣的对象类。在本文中,我们提出了一种最大后验公式,该公式通过合并局部和全局形状先验来依赖于生成图像模型。所提出的方法依赖于图切割以及一种新的形状参数估计,该估计提供了一种基于全局更新的优化策略。我们在合成数据集以及晚期钆增强 MRI 的左心房壁分割上展示了我们的方法,该方法已被证明对于识别心房颤动中的心肌纤维化是有效的。实验结果证明了所提出的方法在提取表面与相应地面真实之间的平均表面距离方面的有效性,以及该方法在识别心房壁中的纤维化和疤痕方面的临床有效性。

相似文献

1
ShapeCut: Bayesian surface estimation using shape-driven graph.ShapeCut:基于形状驱动图的贝叶斯曲面估计。
Med Image Anal. 2017 Aug;40:11-29. doi: 10.1016/j.media.2017.04.005. Epub 2017 Apr 29.
4
Nonparametric Joint Shape and Feature Priors for Image Segmentation.非参数联合形状和特征先验在图像分割中的应用。
IEEE Trans Image Process. 2017 Nov;26(11):5312-5323. doi: 10.1109/TIP.2017.2728185. Epub 2017 Jul 17.
7
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.用于估计多标签概率图谱的最优生成模型。
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.
9
Higher-order nonlinear priors for surface reconstruction.用于曲面重建的高阶非线性先验
IEEE Trans Pattern Anal Mach Intell. 2004 Jul;26(7):878-91. doi: 10.1109/TPAMI.2004.31.

本文引用的文献

5
Joint model-pixel segmentation with pose-invariant deformable graph-priors.结合姿态不变可变形图先验的联合模型-像素分割
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):267-74. doi: 10.1007/978-3-642-40760-4_34.
9
Optimal multiple surface segmentation with shape and context priors.基于形状和上下文先验的最优多表面分割。
IEEE Trans Med Imaging. 2013 Feb;32(2):376-86. doi: 10.1109/TMI.2012.2227120. Epub 2012 Nov 15.
10
Left atrial anatomy revisited.左心房解剖结构再探讨。
Circ Arrhythm Electrophysiol. 2012 Feb;5(1):220-8. doi: 10.1161/CIRCEP.111.962720.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验