College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
Sci Rep. 2017 Jul 20;7(1):6007. doi: 10.1038/s41598-017-06201-3.
MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies.
微小 RNA(miRNAs)在各种人类疾病中发挥着关键作用,但 miRNA 相关的发病机制仍不完全清楚。揭示 miRNA 与疾病之间的潜在关系是生物医学研究中的一个关键问题。考虑到现有计算方法的局限性,我们开发了改进的低秩矩阵恢复(ILRMR)方法,用于 miRNA-疾病关联预测。ILRMR 是一种全局方法,可同时优先考虑所有疾病的潜在关联,且不需要负样本。ILRMR 还可以识别具有研究潜力的 miRNA,而无需任何已知相关 miRNA。通过整合 miRNA-miRNA 相似性信息、疾病-疾病相似性信息和 miRNA 家族信息到矩阵恢复中,ILRMR 在交叉验证和案例研究中的表现优于其他方法。
BMC Bioinformatics. 2019-12-3
IEEE/ACM Trans Comput Biol Bioinform. 2016-7-7
Sci Rep. 2015-9-8
Brief Bioinform. 2019-3-22
Front Genet. 2023-1-4
Front Genet. 2018-12-10
BMC Genomics. 2018-12-31
RNA Biol. 2017-7-3
PLoS Comput Biol. 2017-3-24
J Cell Physiol. 2018-3
Oncotarget. 2017-3-28
Drug Discov Today. 2017-2
Oncotarget. 2016-10-4
IEEE/ACM Trans Comput Biol Bioinform. 2017